Neurocognitive Evidence for Different Problem-Solving Processes between Engineering and Liberal Arts Students

Authors

  • Yu-Cheng Liu Postdoctoral Researcher, Department of Bio-Industry Communication and Development, National Taiwan University, Taipei, Taiwan
  • Chaoyun Liang National Taiwan University

https://doi.org/10.17583/ijep.2020.3940

Keywords:


Downloads

Abstract

Differences exist between engineering and liberal arts students because of their educational backgrounds. Therefore, they solve problems differently. This study examined the brain activation of these two groups of students when they responded to 12 questions of verbal, numerical, or spatial intelligence. A total of 25 engineering and 25 liberal arts students in Taiwan participated in the experiment. The results were as follows. (i) During verbal intelligence tasks, differences between the two groups were observed in the information flows of verbal message comprehension and contextual familiarity detection in the problem-identifying phase, whereas no significant differences were found in the resolution-reaching phase. (ii) During numerical intelligence tasks, differences between the two groups were observed in the information flows of mental calculation and message comprehensionin the problem-identifying phase and those of verbal perception and analogical reasoning in the resolution-reaching phase. (iii) During spatial intelligence tasks, differences between the two groups were observed in the information flows of spatial relation integration and spatial context memory retrieval in the problem-identifying phase and those ofspatial attentionand contextual relation integration in the resolution-reaching phase.

Downloads

Download data is not yet available.

Author Biographies

Yu-Cheng Liu, Postdoctoral Researcher, Department of Bio-Industry Communication and Development, National Taiwan University, Taipei, Taiwan

Postdoctoral Researcher, Department of Bio-Industry Communication and Development,

National Taiwan University, Taipei, Taiwan

Chaoyun Liang, National Taiwan University

Professor, Department of Bio-IndustryCommunication and Development,NationalTaiwan University, Taipei, Taiwan

References

Aichelburg, C., Urbanski, M., de Schotten, M. T., Humbert, F., Levy, R., & Volle, E. (2016). Morphometry of left frontal and temporal poles predicts analogical reasoning abilities. Cerebral Cortex, 26, 915-932.

Google Scholar Crossref

Ansari, D. (2007). Does the parietal cortex distinguish between "10", "ten," and ten dots? Neuron, 53(2), 165-167.

Google Scholar Crossref

Apps, M. A. J., Rushworth, M. F. S., & Chang, S. W. C. (2016). The anterior cingulate gyrus and social cognition: Tracking the motivation of others. Neuron, 90(4), 692-707.

Google Scholar Crossref

Arsalidou, M., & Taylor, M. J. (2011). Is 2 + 2 = 4? Meta-analyses of brain areas needed for numbers and calculations. Neuroimage, 54(3), 2382-2393.

Google Scholar Crossref

Attridge, N., & Inglis, M. (2013). Advanced mathematical study and the development of conditional reasoning skills. PLoS One, 8(7): e69399.

Google Scholar Crossref

Banich, M. T., & Compton, R. J. (2018). Cognitive neuroscience (4th ed.). Cambridge, UK: Cambridge University Press.

Google Scholar Crossref

Barbey, A. K., Colom, R., Solomon, J., Krueger, F., Forbes, C., & Grafman, J. (2012). An integrative architecture for general intelligence and executive function revealed by lesion mapping. Brain: A Journal of Neurology, 135, 1154-1164.

Google Scholar Crossref

Barbey, A. K., & Sloman, S.A. (2007). Base-rate respect: From ecological rationality to dual processes. Behavioral and Brain Sciences, 30, 241-254.

Google Scholar Crossref

Barnett, L., & Seth, A. K. (2014). The MVGC multivariate Granger causality toolbox: A new approach to Granger-causal inference. Journal of Neuroscience Methods, 223, 50-68, 2014.

Google Scholar Crossref

Basagni, B., Luzzatti, C., Navarrete, E., Caputo, M., Scrocco, G., Damora, A., Giunchi, L., Gemignani, P., Caiazzo, A., Gambini, M. G., Avesani, R., Mancuso, M., Trojano, L., & De Tanti, A. (2017). VRT (verbal reasoning test): A new test for assessment of verbal reasoning. Test realisation and Italian normative data from a multicentric study. Neurological Science, 38(4), 643-650.

Google Scholar Crossref

Bastos, A. M., & Schoffelen, J.-M. (2016). A tutorial review of functional connectivity analysis methods and their interpretation pitfalls. Frontiers in System Neuroscience, 9(Pt 2), article 175.

Google Scholar Crossref

Bishop, S. J., Fossella, J., Croucher, C. J., & Duncan, J. (2008). COMT val158met genotype affects neural mechanisms supporting fluid intelligence. Cerebral Cortex, 18(9), 2132-2140.

Google Scholar Crossref

Boccia, M., Piccardi, L., Palermo, L., Nori, R., & Palmiero, M. (2015). Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity. Frontiers in Psychology, 6, Article 1195.

Google Scholar Crossref

Bordoloi, L. M., & Winebrake, J. J. (2015). Bringing the liberal arts to engineering education. The Chronicle of Higher Education, April 27. Retrieved from: https://www.chronicle.com/article/Bringing-the-Liberal-Arts-to/229671.

Google Scholar Crossref

Bressler, S. L., & Seth, A. K. (2011). Wiener–Granger Causality: A well established methodology. NeuoImage, 58(2), 323-329.

Google Scholar Crossref

Bunge, S. A., Burrows, B., & Wagner, A. D. (2004). Prefrontal and hippocampal contributions to visual associative recognition: Interactions between cognitive control and episodic retrieval. Brain and Cognition, 56(2), 141-152.

Google Scholar Crossref

Burgess, N. (2008). Spatial cognition and the brain. Annals of the New York Academy of Sciences, 1124, 77-97.

Google Scholar Crossref

Carter, P. J., & Russell, K. A. (2008). Test and assess your IQ: Numeric, verbal, and spatial aptitude tests. London, UK: Kogan Page.

Google Scholar Crossref

Chen, C.-M., & Lin, Y.-J. (2016). Effects of different text display types on reading comprehension, sustained attention and cognitive load in mobile reading contexts. Interactive Learning Environments, 24(3), 553-571.

Google Scholar Crossref

Cohen Kadoshsend, R., Soskic, S., Iuculano, T., Kanai, R., & Walsh, V. (2010). Modulating neuronal activity produces specific and long-lasting changes in numeric competence. Current Biology, 20(22), 2016-2020.

Google Scholar Crossref

Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201-215.

Google Scholar Crossref

Deary, I. J., Penke, L., & Johnson, W. (2010). The neuroscience of human intelligence differences. Nature Reviews Neuroscience, 11, 201-211.

Google Scholar Crossref

Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9-21.

Google Scholar Crossref

Delorme, A., Palmer, J., Onton, J., Oostenveld, R., & Makeig, S. (2012). Independent EEG sources are dipolar. PLoS ONE, 7(2), e30135.

Google Scholar Crossref

Dennis, T. A., & Solomon, B. (2010). Frontal EEG and emotion regulation: Electrocortical activity in response to emotional film clips is associated with reduced mood Induction and attention interference effects. Biological Psychology, 85(3), 456-464.

Google Scholar Crossref

Ding, M., Bressler, S. L., Yang, W., & Liang, H. (2000). Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: Data preprocessing, model validation, and variability assessment. Biological Cybernetics, 83(1), 35-45.

Google Scholar Crossref

Dominguez, M. G., Martin-Gutierrez, J., Gonzalez, C. R., & Corredeaguas, C. M. M. (2012). Methodologies and tools to improve spatial ability. Procedia: Social and Behavioral Sciences, 51, 736-744.

Google Scholar Crossref

Dunca, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A., Newell, F. N., & Emslie, H. (2000). A neural basis for general intelligence. Science, 289(5478), 457-460.

Google Scholar Crossref

Friston, K. J., Bastos, A. M., Oswal, A., van Wijk, B., Richter, C., & Litvak, V. (2014). Granger causality revisited. NeuroImage, 101, 796-808.

Google Scholar Crossref

Gallup, G. G. J., & Platek, S. M. (2002). Cognitive empathy presupposes self-awareness: Evidence from phylogeny, ontogeny, neuropsychology and mental illness. Behavioral and Brain Sciences, 25(1), 36-37.

Google Scholar Crossref

Gläscher, J., Rudrauf, D., Colom, R., Paul, L. K., Tranel, D., Damasio, H., & Adolphs, R. (2010). Distributed neural system for general intelligence revealed by lesion mapping. Proceedings of the National Academy of Sciences (PNAS), 107(10), 4705-4709.

Google Scholar Crossref

Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37, 424-438.

Google Scholar Crossref

Han, J., Cao, B., Cao, Y., Gao, H., & Li, F. (2016). The role of right frontal brain regions in integration of spatial relation. Neuropsychologia, 86, 29-37.

Google Scholar Crossref

Ivanitskii, A. M., Portnova, G. V., Martynova, O. V., Maiorova, L. A., & Fedina, O. N., & Petrushevskii, A. G. (2015). Brain mapping in verbal and spatial thinking. Neuroscience and Behavioral Physiology, 45(2), 146-153.

Google Scholar Crossref

Jenkins, W. K. (2014). Today’s engineering education is a liberal arts education of the future. Proceedings of the IEEE, 102(9), 1306-1309.

Google Scholar Crossref

Jirout, J. J., & Newcombe, N. S. (2015). Building blocks for developing spatial skills: evidence from a large, representative U.S. sample. Psychological Science, 26(3), 302-310.

Google Scholar Crossref

Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30(2), 135-187.

Google Scholar Crossref

Jung, T.-P., Makeig, S., Mckeown, M. J., Bell, A. J., Lee, T.-W., & Sejnowski, T. J. (2001). Imaging brain dynamics using independent component analysis. Proceedings of the IEEE, 89(7), 1107-1122.

Google Scholar Crossref

Kanjliaa, S., Lanea, C, Feigensona, L., & Bedny, M. (2016). Absence of visual experience modifies the neural basis of numeric thinking. Proceedings of the National Academy of Sciences (PNAS), 113(40), 11172-11177.

Google Scholar Crossref

Liang, C., Lin, C.-T., Yao, S.-N., Chang, W.-S., Liu, Y.-C., & Chen, S.-A. (2017). Visual attention and association: An electroencephalography study in expert designers. Design Studies, 48, 76-95.

Google Scholar Crossref

Lin, C.-T., Chuang, C.-H., Kerick, S., Mullen, T., Jung, T.-P., Ko, L.-W., Chen, S.-A., King, J.-T., & McDowell, K. (2016). Mind-wandering tends to occur under low perceptual demands during driving. Scientific Reports, 6, article 20353.

Google Scholar Crossref

Liu, Y.-C., Chang, C.-C., Yang, Y.-H., & Liang, C. (2018). Spontaneous analogising caused by text stimuli in design thinking: Differences between higher- and lower-creativity groups. Cognitive Neurodynamics. DOI: 10.1007/s11571-017-9454-0.

Google Scholar Crossref

Malhotra, P., Coulthard, E. J., & Husain, M. (2009). Role of right posterior parietal cortex in maintaining attention to spatial locations over time. Brain, 132(3), 645-660.

Google Scholar Crossref

Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167-202.

Google Scholar Crossref

Miller, E. K., & Phelps, E. A. (2010). Current opinion in neurobiology: Cognitive neuroscience 2010. Current Opinion in Neurobiology, 20(2), 141-142.

Google Scholar Crossref

Nation, P. (2015). Principles guiding vocabulary learning through extensive reading. Reading in a Foreign Language, 27(1), 136-145.

Google Scholar Crossref

Neumann, Y. (1983). Differences between engineering and liberal arts: A discriminant analysis of students’ work values. Journal of Experimental Education, 52(1), 41-46.

Google Scholar Crossref

Oakhill, J., Yuill, N., & Garnham, A. (2011). The differential relations between verbal, numerical and spatial working memory abilities and children’s reading comprehension. International Electronic Journal of Elementary Education, 4(1), 83-106.

Google Scholar Crossref

Paul, E. J., Larsen, R. J., Nikolaidis, A., Ward, N., Hillman, C. H., Cohen, N. J., Kramer, A. F., & Barbey, A. K. (2016). Dissociable brain biomarkers of fluid intelligence. NeuroImage, 137, 201-211.

Google Scholar Crossref

Sakurai, Y., Hamada, K., Tsugawa, N., & Sugimoto, I. (2015). Ventral simultanagnosia and prosopagnosia for unfamiliar faces due to a right posterior superior temporal sulcus and angular gyrus lesion. Neurocase, 22(1), 122-129.

Google Scholar Crossref

Shelton, C. (2016). Students who developed logical reasoning skills reported improved confidence in drug dose calculation: Feedback from remedial maths classes. Nurse Education Today, 41, 6-11.

Google Scholar Crossref

Slotnick, S. D., Moo, L. R., Segal, J. B., & Hart, J. Jr. (2003). Distinct prefrontal cortex activity associated with item memory and source memory for visual shapes. Cognitive Brain Research, 17(1), 75-82.

Google Scholar Crossref

Spearman, C. (1904). General intelligence: Objectively determined and measured. American Journal of Psychology, 15(2), 201-293.

Google Scholar Crossref

Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2011). Working memory training using mental calculation impacts regional gray matter of the frontal and parietal regions. PLoS One, 6(8), e23175.

Google Scholar Crossref

Wang, H. E., Bénar, C. G., Quilichini, P. P., Friston, K. J., Jirsa, V. K., & Bernard, C. (2014). A systematic framework for functional connectivity measures. Frontiers in Neuroscience, 8, article 405.

Google Scholar Crossref

Wisniewski, I., Wendling, A. S., Manning, L., & Steinhoff, B. J. (2012). Visuo-spatial memory tests in right temporal lobe epilepsy foci: Clinical validity. Epilepsy & Behavior, 23(3), 254-260.

Google Scholar Crossref

Yao, S.-N., Lin, C.-T., King, J.-T., Liu, Y.-C., & Liang, C. (2017). Learning in the visual association of novice and expert designers. Cognitive Systems Research, 43, 76-88.

Google Scholar Crossref

Downloads

Published

2020-06-24

Almetric

Dimensions

How to Cite

Liu, Y.-C., & Liang, C. (2020). Neurocognitive Evidence for Different Problem-Solving Processes between Engineering and Liberal Arts Students. International Journal of Educational Psychology, 9(2), 104–131. https://doi.org/10.17583/ijep.2020.3940

Issue

Section

Articles