Successful development of startups as a global trend of innovative socio-economic transformations
https://doi.org/10.17583/rimcis.2018.3576
Keywords:
Downloads
Abstract
In order to make positive socio-economic transformations, the concept of the sustainable development was proposed and it can be implemented through the innovation. And startups are among the modern innovation drivers. So, the aim of the research was to identify the key startup success factors and to develop an instrument for startup success evaluation in order to minimize the loss of time and resources and partly overcome the high uncertainty rates, specific to the startup industry, using multidisciplinary approach and, in turn, contribute to the sustainable development implementation. It was found that there are three main constituents which influence the startup success – an external environment, startup activity and an internal startup environment. The determined success factors were analyzed according to the groups which correspond to these constituents. The mathematical model in the form of the Bayesian network for evaluation and prediction of the startup success was developed. It was found that the modeled startup success probability is most likely to be of a low or an average level. The conditional probabilities distribution for the startup success was also analyzed. The developed model can be used for the startups success levels determination in a particular country, specific market, etc.
Downloads
References
Aguilera, P. A., Fernández, A., Fernández, R., Rumí, R., & Salmerón, A. (2011). Bayesian networks in environmental modelling. Environmental Modelling & Software, 26(12), 1376–1388. https://doi.org/10.1016/j.envsoft.2011.06.004
Google Scholar CrossrefAllen, T. J., Gloor, P., Fronzetti Colladon, A., Woerner, S. L., & Raz, O. (2016). The power of reciprocal knowledge sharing relationships for startup success. Journal of Small Business and Enterprise Development, 23(3), 636–651. https://doi.org/10.1108/JSBED-08-2015-0110
Google Scholar CrossrefBurke, C. S., Stagl, K. C., Klein, C., Goodwin, G. F., Salas, E., & Halpin, S. M. (2006). What type of leadership behaviors are functional in teams? A meta-analysis. The Leadership Quarterly, 17(3), 288–307. https://doi.org/10.1016/j.leaqua.2006.02.007
Google Scholar CrossrefČirjevskis, A., & Dvotsova, A. (2012). How to Define the Probability of Success of Innovative Startups? In The 7th International Scientific Conference “Business and Management 2012”. Selected papers (pp. 815–821). Vilnius, Lithuania: Vilnius Gediminas Technical University Publishing House Technika. https://doi.org/10.3846/bm.2012.105
Google Scholar CrossrefDavila, A., Foster, G., He, X., & Shimizu, C. (2015). The rise and fall of startups: Creation and destruction of revenue and jobs by young companies. Australian Journal of Management, 40(1), 6–35. https://doi.org/10.1177/0312896214525793
Google Scholar CrossrefGartner, W. B. (1985). A Conceptual Framework for Describing the Phenomenon of New Venture Creation. The Academy of Management Review, 10(4), 696–706. https://doi.org/10.2307/258039
Google Scholar CrossrefGundolf, K., Gast, J., & Géraudel, M. (2017). Startups’ Innovation Behaviour: an Investigation into the Role of Entrepreneurial Motivations. International Journal of Innovation Management, 21(7), 1750054. https://doi.org/10.1142/S1363919617500542
Google Scholar CrossrefHenderson, R. M., & Clark, K. B. (1990). Architectural Innovation: The Reconfiguration of Existing Product Technologies and the Failure of Established Firms. Administrative Science Quarterly, 35(1), 9–30. https://doi.org/10.2307/2393549
Google Scholar CrossrefHu, Y., Zhang, X., Ngai, E. W. T., Cai, R., & Liu, M. (2013). Software project risk analysis using Bayesian networks with causality constraints. Decision Support Systems, 56, 439–449. https://doi.org/10.1016/j.dss.2012.11.001
Google Scholar CrossrefKaiser, U., & Müller, B. (2015). Skill heterogeneity in startups and its development over time. Small Business Economics, 45(4), 787–804. https://doi.org/10.1007/s11187-015-9667-8
Google Scholar CrossrefKlabunde, A. (2016). How much should an investor trust the startup entrepreneur? A network model. Journal of Economic Interaction and Coordination, 11(2), 293–312. https://doi.org/10.1007/s11403-015-0147-7
Google Scholar CrossrefKohler, T. (2016). Corporate accelerators: Building bridges between corporations and startups. Business Horizons, 59(3), 347–357. https://doi.org/10.1016/j.bushor.2016.01.008
Google Scholar CrossrefLacerda, R. T. de O., Klein, B. L., Fulco, J. F., Santos, G., & Bittarello, K. (2017). Integração inovadora entre empresas incubadas e universidades para geração contínua de vantagens competitivas em ambientes dinâmicos. Navus - Revista de Gestão E Tecnologia, 78–96. https://doi.org/10.22279/navus.2017.v7n2.p78-96.497
Google Scholar CrossrefLeong, C. K. (2016). Credit Risk Scoring with Bayesian Network Models. Computational Economics, 47(3), 423–446. https://doi.org/10.1007/s10614-015-9505-8
Google Scholar CrossrefNagarajan, R., Scutari, M., & Lèbre, S. (2013). Bayesian Networks in R. New York, NY: Springer New York. https://doi.org/10.1007/978-1-4614-6446-4
Google Scholar CrossrefOuimet, P., & Zarutskie, R. (2014). Who works for startups? The relation between firm age, employee age, and growth. Journal of Financial Economics, 112(3), 386–407. https://doi.org/10.1016/j.jfineco.2014.03.003
Google Scholar CrossrefPangarkar, N., & Wu, J. (2013). Alliance formation, partner diversity, and performance of Singapore startups. Asia Pacific Journal of Management, 30(3), 791–807. https://doi.org/10.1007/s10490-012-9305-9
Google Scholar CrossrefPeng Xie, Li, J. H., Xinming Ou, Peng Liu, & Levy, R. (2010). Using Bayesian networks for cyber security analysis. In 2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN) (pp. 211–220). IEEE. https://doi.org/10.1109/DSN.2010.5544924
Google Scholar CrossrefRasmussen, E. S., & Tanev, S. (2015). The Emergence of the Lean Global Startup as a New Type of Firm. Technology Innovation Management Review, 5(11), 12–19.
Google Scholar CrossrefReyes-Castro, L. I., & Abad, A. G. (2016). A Dynamic Bayesian Network Model for Inventory Level Estimation in Retail Marketing. In Proceedings of the 2016 Industrial and Systems Engineering Research Conference.
Google Scholar CrossrefSarkar, D. (2008). Lattice. New York, NY: Springer New York. https://doi.org/10.1007/978-0-387-75969-2
Google Scholar CrossrefScutari, M., & Denis, J.-B. (2015). Bayesian networks with examples in R. Boca Raton: CRC Press Taylor & Francis Group.
Google Scholar Crossrefvan Gelderen, M., Thurik, R., & Bosma, N. (2006). Success and Risk Factors in the Pre-Startup Phase. Small Business Economics, 26(4), 319–335. https://doi.org/10.1007/s11187-004-6837-5
Google Scholar CrossrefVieira, K. C., Prado, J. W. do, Alcântara, V. D. C., & Bermejo, P. H. de S. (2015). Fontes Externas no Processo de Inovação Aberta: Fatores Potencializadores e Restritivos em Startups de Base Tecnológica. Journal on Innovation and Sustainability. RISUS ISSN 2179-3565, 6(3), 3−28. https://doi.org/10.24212/2179-3565.2015v6i3p3-28
Google Scholar CrossrefWallin, A., Still, K., & Henttonen, K. (2016). Entrepreneurial Growth Ambitions: The Case of Finnish Technology Startups. Technology Innovation Management Review, 6(10), 5−16.
Google Scholar CrossrefГлазьев, С. Ю. (2012). Современная теория длинных волн в развитии экономики. ЭНСР, 2(57), 27−42.
Google Scholar CrossrefЗгуровский, М. З., Бидюк, П. И., & Терентьев, А. Н. (2008). Методы построения байесовских сетей на основе оценочных функций. Кибернетика и Системный Анализ, (2), 81–88.
Google Scholar CrossrefПопов, М. Е. (2011). Технология и ее роль в инновационном развитии общества. Вестник Донского Государственного Технического Университета, 11(8–2), 1356−1371.
Google Scholar CrossrefТоропова, А. В. (2016). Байесовские сети доверия: инструменты и использование в учебном процессе. Компьютерные Инструменты в Образовании, (4), 43–53.
Google Scholar CrossrefDownloads
Published
Metrics
Almetric
Dimensions
How to Cite
Issue
Section
License
All articles are published under Creative Commons copyright (CC BY). Authors hold the copyright and retain publishing rights without restrictions, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles as the original source is cited.