Effectiveness of Artificial Intelligence Models for Predicting School Dropout: A Meta-Analysis

Authors

https://doi.org/10.17583/remie.13342

Keywords:


Downloads

Type:

Text

Abstract

School dropout is a major concern in the educational systems of all countries. In recent years, artificial intelligence is playing an important role in predicting school dropout in the different educational stages of formal education. In this context, it is crucial to know that these predictions are accurate and understandable. This meta-analytic study aims to investigate the effectiveness of dropout prediction models conducted until May 2022. The databases used are Web of Science, Scopus, PubMed, ERIC, PsyInfo, Dialnet and Scielo. 15 studies with a sample size of 199,015 participants are analyzed. The meta-analysis uses a random-effects proportions model with 95% confidence interval. Statistical evidence indicates that artificial intelligence models performed well (91%; 95% CI = 89-93%) in predicting dropout; specifically, the Decision Tree model significantly (95.3%; 95% CI = 93-98%) predicts dropout better than other models such as Random Forest, Artificial Neural Network, Support Vector Machines, Logistic Regression and Stacking Ensemble. Consequently, more models should be applied in the dropout field with larger numbers of participants to confirm these findings and improve the quality of education.

Downloads

Download data is not yet available.

References

Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education, 10(1), 61-75. https://doi.org/10.1108/JARHE-09-2017-0113

Google Scholar Crossref

Adnan, M., Habib, A., Ashraf, J., Mussadiq, S., Raza, A. A., Abid, M., et al. (2021). Predicting at-risk students at different percentages of course length for early intervention using machine learning models. Ieee Access, 9, 7519-7539. Doi: 10.1109/ACCESS.2021.3049446

Google Scholar Crossref

Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.

Google Scholar Crossref

Alban, M., & Mauricio, D. (2019). Neural networks to predict dropout at the universities. Int. J. Mac. Learn. Comput., 9, 149-153. Doi: 10.18178/ijmlc.2019.9.2.779

Google Scholar Crossref

Aldabas-Rubira, E. (2002). Introducción al reconocimiento de patrones mediante redes neuronales. IX Jornades de Conferències d'Enginyeria Electrònica del Campus de Terrassa, Terrassa, España, del 9 al 16 de Diciembre del 2002.

Google Scholar Crossref

All, E. (2019). Education at a Glance 2019 OCDE Indicators. OECD.

Google Scholar Crossref

Altman, D.G., Machin, D., Bryant, T.N., & Gardner, M.J. (2000). Statistics with confidence. BMJ Books.

Google Scholar Crossref

Baker, T., & Smith, L. (2019). Educ-AI-tion rebooted? Exploring the future of artificial intelligence in schools and colleges. Nesta. https://media.nesta.org.uk/documents/Future_of_AI_and_education_v5_WEB.pdf

Google Scholar Crossref

Balfanz, R., Herzog, L. & MacIver, D. (2007). Preventing student disengagement and keeping students on the graduation path in urban middle-grades schools: Early identification and effective interventions. Educational Psychologist, 42(4), 223-235. https://doi.org/10.1080/00461520701621079

Google Scholar Crossref

Barros, T. M., Souza Neto, P. A., Silva, I., & Guedes, L. A. (2019). Predictive models for imbalanced data: a school dropout perspective. Education Sciences, 9(4), 275. https://doi.org/10.3390/educsci9040275

Google Scholar Crossref

Berriri, M., Djema, S., Rey, G., & Dartigues-Pallez, C. (2021). Multi-class assessment based on random forests. Education Sciences, 11(3), 92. https://doi.org/10.3390/educsci11030092

Google Scholar Crossref

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to Meta-Analysis. John Wiley and Sons, Ltd.

Google Scholar Crossref

Campbell, I. (2007). Chi-squared and Fisher-Irwin tests of two-by-two tables with small sample recommendations. Statistics in Medicine 26, 3661-3675. DOI: 10.1002/sim.2832

Google Scholar Crossref

Cardona, T., Cudney, E.A., & Snyder, J. (2019). Predicting degree completion throug data mining. 126TH Annual Conference & Exposition, del 15-19 June 2019. doi:10.18260/1-2—33183

Google Scholar Crossref

Cardona, T., Cudney, E.A., Hoerl, R. & Snyder, J. (2020). Data mining and machine learning retention models in higher education. Journal of College Studente Retention: Reseachr, Theory & Practicec, 0(0), 1-25. doi:10.1177/1521025120964920

Google Scholar Crossref

Chung, J., & Lee, S. (2019). Dropout early warning systems for high school students using machine learning. Child. Youth Serv. Rev., 96, 346-353. https://doi.org/10.1016/j.childyouth.2018.11.030

Google Scholar Crossref

Day, T., Chang, I. C., Chung, C. K. L., Doolittle, W. E., Housel, J., & McDaniel, P. N. (2021). The immediate impact of COVID-19 on postsecondary teaching and learning. Professional Geographer, 73(1), 1-13. doi:10.1080/00330124.2020.1823864

Google Scholar Crossref

Delen, D. (2011). Predicting student attrition with data mining methods. Journal of College Student Retention: Research, Theory and Practice, 13(1), 17–35. https://doi.org/10.2190/CS.13.1.b.

Google Scholar Crossref

Dissanayake, H., Robinson, D., & Al-Azzam, O. (2016). Predictive Modeling for Student Retention at St. Cloud State University. In Proceedings of the International Conference on Data Mining (DMIN) (p. 215). WorldComp.

Google Scholar Crossref

Dobrev, D. (2012). A definition of artificial intelligence. arXiv preprint:1210.1568. https://doi.org/10.48550/arXiv.1210.1568

Google Scholar Crossref

Du, X., Yang, J., & Hung, J-L. (2020). An integrated framework based on latent variational autoencoder for providing early warning of at-risk students. IEEE Access, 8, 10110-10122. Doi: 10.1109/ACCESS.2020.2964845

Google Scholar Crossref

Educause (2019). Horizon report: 2019 higher education edition. https://library.educause.edu/-/media/files/library/2019/4/2019horizonreport.pdf

Google Scholar Crossref

Egger, M., Smith, D., & Altmand, D. G. (2001). Systematic Reviews in Health Care: Meta-Analysis in Context. BMJ Publishing Group.

Google Scholar Crossref

El Fouki, M., & Aknin, N. (2019). Multidimensional Approach Based on Deep Learning to Improve the Prediction Performance of DNN Models. International Journal of Emerging Technologies in Learning, 14(2). https://doi.org/10.3991/ijet.v14i02.8873

Google Scholar Crossref

Fernández-García, A., Preciado, J., Melchor, F., Rodriguez-Echevarria, R., Conejero, J., & Sanchez-Figueroa, F. (2021). A real-life machine learning experience for predicting university dropout at different stages using academic data. IEEC Access, 9, 133076-133090. https://doi.org/10.1109/ACCESS.2021.3115851

Google Scholar Crossref

Freitas, F. A. D. S., Vasconcelos, F. F., Peixoto, S. A., Hassan, M. M., Dewan, M. A. A., Albuquerque, V. H. C. D., & Filho, P. P. R. (2020). IoT system for school dropout prediction using machine learning techniques based on socioeconomic data. Electronics, 9(10), 1613. https://doi.org/10.3390/electronics9101613

Google Scholar Crossref

Glass, G. V. (1976). Primary, secondary, and meta-analysis of research. Educational Researcher, 5, 3-8. https://doi.org/10.3102/0013189X005010003

Google Scholar Crossref

Gomes Mantovani, R., Horváth, T., Rossi, A.L.D., Cerri, R., Barbon Junior, S., Vanschoren, J., & Pone de Leon Ferreira de Carvalho, A.C. (2018). Better Trees: An empirical study on hyperparameter tuning of classification decision tree induction algorithms. arXiv, 1812.02207

Google Scholar Crossref

González, J., & Balaguer, A. (2007). Revisión sistemática y metanálisis (I): conceptos básicos. Evid Pediatr., 3, 107. Doi: vol3/2007_numero_4/2007_vol3_numero4.23.htm

Google Scholar Crossref

Hamim, T., Benabbou, F., & Sael, N. (2021). Survey of machine learning techniques for student profile modeling. International Journal of Emerging Technologies in Learning (iJET), 16(4), 136-151. https://doi.org/10.3991/ijet.v16i04.18643

Google Scholar Crossref

He, Y., Chen, R., Li, X., Hao, C., Liu, S., Zhang, G., & Jiang, B. (2020). Online at-risk student identification using RNN-GRU joint neural networks. Information, 11(10), 474. https://doi.org/10.3390/info11100474

Google Scholar Crossref

Heublein, U. (2014). Student Drop-out from German Higher Education Institutions. Eur. J. Educ., 49, 497-513. https://doi.org/10.1111/ejed.12097

Google Scholar Crossref

Higgins, J. P., & Green, S. (2008). Cochrane Handbook for Systematic Reviews of Interventions. The Cochrane Collaboration.

Google Scholar Crossref

Higgins, J. P., Thompson, S. G., Deeks, J. J., and Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327, 327–557. doi: 10.1136/bmj.327.7414.557

Google Scholar Crossref

Hutagaol, N., & Suharjito, S. (2019). Predictive modelling of student dropout using ensemble classifier method in higher education. Adv. Sci. Technol. Eng. Syst. J., 4, 206-2011. Doi: 10.25046/aj040425

Google Scholar Crossref

Jadric, M., Garaca, Z. & Cukusic, M. (2010). Student dropout analysis with application of data mining methods. Management: Journal of Contemporany Management Issues, 15(1), 31-46.

Google Scholar Crossref

Jiang, S., Pang, G., Wu, M., & Kuang, L. (2012). An improved K-nearest-neighbor algorithm for text categorization. Expert Systems with Applications, 39(1), 1503-1509. 10.1016/j.eswa.2011.08.040

Google Scholar Crossref

Kearney, C. A. (2008a). An interdisciplinary model of school absenteeism in youth to inform professional practice and public policy. Educational Psychology Review, 20, 257–282. https://doi.org/10.1007/s10648-008-9078-3.

Google Scholar Crossref

Kim, D., & Kim, S. (2018). Sustainable education: Analyzing the determinants of university student dropout by nonlinear panel data models. Sustainability, 10(4), 954. https://doi.org/10.3390/su10040954

Google Scholar Crossref

Kiss, B., Nay, M., Molontany, E., & Csabay, B. (2019). Predicting dropout using high school and first-semester academic achievement measures. In Proceedings of the 2019 17th International Conference on Emerging eLearning Technologies and Applications (ICETA), Starý Smokovec, Slovakia, 21–22 November 2019.

Google Scholar Crossref

Kostopoulos, G., Kotsiantis, S., Ragos, O., & Grapsa, T. N. (2017). Early dropout prediction in distance higher education using active learning. In 2017 8th International Conference on Information, Intelligence, Systems & Applications (IISA) (pp. 1-6). IEEE.

Google Scholar Crossref

Mahoney, J. L. (2018). School dropout. In M.H. Bomstein & M.E. Arterberry, K.L. Fingeman & E. Landsford (Eds.), The SAGE enciclopedia of lifespam human development (pp.1889-1891). SAGE.

Google Scholar Crossref

Martinho, V. R. D. C., Nunes, C., & Minussi, C. R. (2013). An intelligent system for prediction of school dropout risk group in higher education classroom based on artificial neural networks. In 2013 IEEE 25th International Conference on Tools with Artificial Intelligence (pp. 159-166). Ieee.

Google Scholar Crossref

Mduma, N., & Machuve, D. (2021). Machine Learning Model for Predicting Student Dropout: A Case of Tanzania, Kenya and Uganda. In 2021 IEEE AFRICON (pp. 1-6). IEEE.

Google Scholar Crossref

MedCalc Software Ltd. Comparison of proportions calculator. https://www.medcalc.org/calc/comparison_of_proportions.php (Version 20.110; accessed June 9, 2022).

Google Scholar Crossref

Mira, J., Delgado, A.E., Boticario, J.G., & Díez, F.J. (2003). Aspectos básicos de la inteligencia artificial. Sanz y Torres.

Google Scholar Crossref

Moschovakis, Y. N. (2001). What is an algorithm?. In Mathematics unlimited—2001 and beyond (pp. 919-936). Springer, Berlin, Heidelberg.

Google Scholar Crossref

Mourdi, Y., Sadgal, M., Fathi, W. B., & El Kabtane, H. (2020). A machine learning based approach to enhance MOOC users’ classification. Turkish Online Journal of Distance Education, 21(2), 47-68.

Google Scholar Crossref

Nabil, A., Seyam, M., & Abou-Elfetouh, A. (2021). Prediction of students’ academic performance based on courses’ grades using deep neural networks. IEEE Access, 9, 140731-140746. 10.1109/ACCESS.2021.3119596

Google Scholar Crossref

Niyogisubizo, J., Liao, L., Nziyumva, E., Murwanashyaka, E., & Nshimyumukiza, P. C. (2022). Predicting student's dropout in university classes using two-layer ensemble machine learning approach: A novel stacked generalization. Computers and Education: Artificial Intelligence, 3, 100066. https://doi.org/10.1016/j.caeai.2022.100066

Google Scholar Crossref

Nuankaew, P. (2019). Dropout situation of business computer students, University of Phayao. International Journal of Emerging Technologies in Learning (iJET), 14(19), 115-131. https://doi.org/10.3991/ijet.v14i19.11177

Google Scholar Crossref

OECD (2019). Education at a Glance 2019: OECD indicators. OECD Publishing, Paris

Google Scholar Crossref

Oztekin, A. (2016). A hybrid data analytic approach to predict college graduation status and its determinative factors. Industrial Management & Data Systems, 116(8) 1678-1699. https://doi.org/10.1108/IMDS-09-2015-0363

Google Scholar Crossref

Page, M.J., McKenzie, J.E., Bossuyt, P.M., Hoffmann, T.C., Mulrow, C.D. et al. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372(71). Doi: 10.1136/bmj.n71

Google Scholar Crossref

Pal, M., & Mather, P. M. (2003). An assessment of the effectiveness of decision tree methods for land cover classification. Remote sensing of environment, 86(4), 554-565.

Google Scholar Crossref

Pereira, R., & Zambrano, J. (2017). Application of decision trees for detection of student dropout profiles. Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December 2017.

Google Scholar Crossref

Popenici, S., & Kerr, S. (2017). Exploring the analysis artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning, 12(22). https://doi.org/10.1186/s41039-017-0062-8

Google Scholar Crossref

Reuge, N., Jenkins, R., Brossard, M., Soobrayan, B., Mizunoya, S., Ackers, J., et al. (2021). Education response to COVID 19 pandemic, a special issue proposed by UNICEF: Editorial review. International Journal of Educational Development, 87, 102485. Doi: 10.1016/j.ijedudev.2021.102485

Google Scholar Crossref

Richardson, J.T.E. (2011). The analysis of 2 x 2 contingency tables – Yet again. Statistics in Medicine 30, 890. Doi: 10.1002/sim.4116

Google Scholar Crossref

Sani, N. S., Nafuri, A. F. M., Othman, Z. A., Nazri, M. Z. A., & Mohamad, K. N. (2020). Drop-out prediction in higher education among B40 students. International Journal of Advanced Computer Science and Applications, 11(11). 10.14569/IJACSA.2020.0111169

Google Scholar Crossref

Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006). Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. In Australasian joint conference on artificial intelligence (pp. 1015-1021). Berlin, Heidelberg: Springer Berlin Heidelberg.

Google Scholar Crossref

Sreenivasa Rao, K., Swapna, N., & Praveen Kumar, P. (2018). Educational data mining for student placement prediction using machine learning algorithms. International Journal of Engineering and Technology (UAE), 7(1.2), 43–46. https://doi.org/10.14419/ijet.v7i1.2.8988

Google Scholar Crossref

Su, J.S., Zhang, B.F., & Xu, X. (2006). Advances in machine learning based text categorization. Ruan Jian Xue Bao (Journal of Software), 17(9), 1848-1859.

Google Scholar Crossref

Tan, M., & Shao, P. (2015). Prediction of student dropout in e-Learning program through the use of machine learning method. International journal of emerging technologies in learning, 10(1). https://doi.org/10.3991/ijet.v10i1.4189

Google Scholar Crossref

Tsao, N. L., Kuo, C. H., Guo, T. L., & Sun, T. J. (2017, July). Data Consideration for At-Risk Students Early Alert. In Advanced Applied Informatics (IIAI-AAI), 2017 6th IIAI International Congress on (pp. 208-211). IEEE.

Google Scholar Crossref

Uliyan, D., Aljaloud, A. S., Alkhalil, A., Al Amer, H. S., Mohamed, M. A. E. A., & Alogali, A. F. M. (2021). Deep learning model to predict students retention using BLSTM and CRF. IEEE Access, 9, 135550-135558. Doi:10.1109/ACCESS.2021.3117117

Google Scholar Crossref

UNICEF (2017). Improving education participation. Policy and Practice Pointers for Enrolling All Children and Adolescents in School and Preventing Dropout. UNICEF Series on Education Participation and Dropout Prevention, 2.

Google Scholar Crossref

UNICEF (2018). Early warning systems for students at risk of dropping out. UNICEF Series on Education Participation and Dropout Prevention, 2.

Google Scholar Crossref

Wilcoxson, L., Cotter, J., & Jon, S. (2011). Beyond the first-year experience: The impact on attrition of student experiences throughout undergraduate degree studies in six diverse universities. Stud. High. Educ., 36, 331-352. https://doi.org/10.1080/03075070903581533

Google Scholar Crossref

Xiao, J., Wang, M. Jiang, B., & Li, J. (2018). A personalized recommendation system with combinational algorithm for online learning. J. Ambient Intell. Humanized Comput., 9(3), 667-677. 10.1007/s12652-017-0466-8

Google Scholar Crossref

Downloads

Published

2024-10-15

Almetric

Dimensions

How to Cite

Roda-Segarra, J., de-la-Peña, C., & Mengual-Andrés, S. (2024). Effectiveness of Artificial Intelligence Models for Predicting School Dropout: A Meta-Analysis. Multidisciplinary Journal of Educational Research, 14(3), 317–340. https://doi.org/10.17583/remie.13342

Issue

Section

Articles