Effectiveness of Artificial Intelligence Models for Predicting School Dropout: A Meta-Analysis
https://doi.org/10.17583/remie.13342
Keywords:
Type:
TextAbstract
School dropout is a major concern in the educational systems of all countries. In recent years, artificial intelligence is playing an important role in predicting school dropout in the different educational stages of formal education. In this context, it is crucial to know that these predictions are accurate and understandable. This meta-analytic study aims to investigate the effectiveness of dropout prediction models conducted until May 2022. The databases used are Web of Science, Scopus, PubMed, ERIC, PsyInfo, Dialnet and Scielo. 15 studies with a sample size of 199,015 participants are analyzed. The meta-analysis uses a random-effects proportions model with 95% confidence interval. Statistical evidence indicates that artificial intelligence models performed well (91%; 95% CI = 89-93%) in predicting dropout; specifically, the Decision Tree model significantly (95.3%; 95% CI = 93-98%) predicts dropout better than other models such as Random Forest, Artificial Neural Network, Support Vector Machines, Logistic Regression and Stacking Ensemble. Consequently, more models should be applied in the dropout field with larger numbers of participants to confirm these findings and improve the quality of education.
Downloads
References
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education, 10(1), 61-75. https://doi.org/10.1108/JARHE-09-2017-0113
Google Scholar CrossrefAdnan, M., Habib, A., Ashraf, J., Mussadiq, S., Raza, A. A., Abid, M., et al. (2021). Predicting at-risk students at different percentages of course length for early intervention using machine learning models. Ieee Access, 9, 7519-7539. Doi: 10.1109/ACCESS.2021.3049446
Google Scholar CrossrefAhmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Google Scholar CrossrefAlban, M., & Mauricio, D. (2019). Neural networks to predict dropout at the universities. Int. J. Mac. Learn. Comput., 9, 149-153. Doi: 10.18178/ijmlc.2019.9.2.779
Google Scholar CrossrefAldabas-Rubira, E. (2002). Introducción al reconocimiento de patrones mediante redes neuronales. IX Jornades de Conferències d'Enginyeria Electrònica del Campus de Terrassa, Terrassa, España, del 9 al 16 de Diciembre del 2002.
Google Scholar CrossrefAll, E. (2019). Education at a Glance 2019 OCDE Indicators. OECD.
Google Scholar CrossrefAltman, D.G., Machin, D., Bryant, T.N., & Gardner, M.J. (2000). Statistics with confidence. BMJ Books.
Google Scholar CrossrefBaker, T., & Smith, L. (2019). Educ-AI-tion rebooted? Exploring the future of artificial intelligence in schools and colleges. Nesta. https://media.nesta.org.uk/documents/Future_of_AI_and_education_v5_WEB.pdf
Google Scholar CrossrefBalfanz, R., Herzog, L. & MacIver, D. (2007). Preventing student disengagement and keeping students on the graduation path in urban middle-grades schools: Early identification and effective interventions. Educational Psychologist, 42(4), 223-235. https://doi.org/10.1080/00461520701621079
Google Scholar CrossrefBarros, T. M., Souza Neto, P. A., Silva, I., & Guedes, L. A. (2019). Predictive models for imbalanced data: a school dropout perspective. Education Sciences, 9(4), 275. https://doi.org/10.3390/educsci9040275
Google Scholar CrossrefBerriri, M., Djema, S., Rey, G., & Dartigues-Pallez, C. (2021). Multi-class assessment based on random forests. Education Sciences, 11(3), 92. https://doi.org/10.3390/educsci11030092
Google Scholar CrossrefBorenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to Meta-Analysis. John Wiley and Sons, Ltd.
Google Scholar CrossrefCampbell, I. (2007). Chi-squared and Fisher-Irwin tests of two-by-two tables with small sample recommendations. Statistics in Medicine 26, 3661-3675. DOI: 10.1002/sim.2832
Google Scholar CrossrefCardona, T., Cudney, E.A., & Snyder, J. (2019). Predicting degree completion throug data mining. 126TH Annual Conference & Exposition, del 15-19 June 2019. doi:10.18260/1-2—33183
Google Scholar CrossrefCardona, T., Cudney, E.A., Hoerl, R. & Snyder, J. (2020). Data mining and machine learning retention models in higher education. Journal of College Studente Retention: Reseachr, Theory & Practicec, 0(0), 1-25. doi:10.1177/1521025120964920
Google Scholar CrossrefChung, J., & Lee, S. (2019). Dropout early warning systems for high school students using machine learning. Child. Youth Serv. Rev., 96, 346-353. https://doi.org/10.1016/j.childyouth.2018.11.030
Google Scholar CrossrefDay, T., Chang, I. C., Chung, C. K. L., Doolittle, W. E., Housel, J., & McDaniel, P. N. (2021). The immediate impact of COVID-19 on postsecondary teaching and learning. Professional Geographer, 73(1), 1-13. doi:10.1080/00330124.2020.1823864
Google Scholar CrossrefDelen, D. (2011). Predicting student attrition with data mining methods. Journal of College Student Retention: Research, Theory and Practice, 13(1), 17–35. https://doi.org/10.2190/CS.13.1.b.
Google Scholar CrossrefDissanayake, H., Robinson, D., & Al-Azzam, O. (2016). Predictive Modeling for Student Retention at St. Cloud State University. In Proceedings of the International Conference on Data Mining (DMIN) (p. 215). WorldComp.
Google Scholar CrossrefDobrev, D. (2012). A definition of artificial intelligence. arXiv preprint:1210.1568. https://doi.org/10.48550/arXiv.1210.1568
Google Scholar CrossrefDu, X., Yang, J., & Hung, J-L. (2020). An integrated framework based on latent variational autoencoder for providing early warning of at-risk students. IEEE Access, 8, 10110-10122. Doi: 10.1109/ACCESS.2020.2964845
Google Scholar CrossrefEducause (2019). Horizon report: 2019 higher education edition. https://library.educause.edu/-/media/files/library/2019/4/2019horizonreport.pdf
Google Scholar CrossrefEgger, M., Smith, D., & Altmand, D. G. (2001). Systematic Reviews in Health Care: Meta-Analysis in Context. BMJ Publishing Group.
Google Scholar CrossrefEl Fouki, M., & Aknin, N. (2019). Multidimensional Approach Based on Deep Learning to Improve the Prediction Performance of DNN Models. International Journal of Emerging Technologies in Learning, 14(2). https://doi.org/10.3991/ijet.v14i02.8873
Google Scholar CrossrefFernández-García, A., Preciado, J., Melchor, F., Rodriguez-Echevarria, R., Conejero, J., & Sanchez-Figueroa, F. (2021). A real-life machine learning experience for predicting university dropout at different stages using academic data. IEEC Access, 9, 133076-133090. https://doi.org/10.1109/ACCESS.2021.3115851
Google Scholar CrossrefFreitas, F. A. D. S., Vasconcelos, F. F., Peixoto, S. A., Hassan, M. M., Dewan, M. A. A., Albuquerque, V. H. C. D., & Filho, P. P. R. (2020). IoT system for school dropout prediction using machine learning techniques based on socioeconomic data. Electronics, 9(10), 1613. https://doi.org/10.3390/electronics9101613
Google Scholar CrossrefGlass, G. V. (1976). Primary, secondary, and meta-analysis of research. Educational Researcher, 5, 3-8. https://doi.org/10.3102/0013189X005010003
Google Scholar CrossrefGomes Mantovani, R., Horváth, T., Rossi, A.L.D., Cerri, R., Barbon Junior, S., Vanschoren, J., & Pone de Leon Ferreira de Carvalho, A.C. (2018). Better Trees: An empirical study on hyperparameter tuning of classification decision tree induction algorithms. arXiv, 1812.02207
Google Scholar CrossrefGonzález, J., & Balaguer, A. (2007). Revisión sistemática y metanálisis (I): conceptos básicos. Evid Pediatr., 3, 107. Doi: vol3/2007_numero_4/2007_vol3_numero4.23.htm
Google Scholar CrossrefHamim, T., Benabbou, F., & Sael, N. (2021). Survey of machine learning techniques for student profile modeling. International Journal of Emerging Technologies in Learning (iJET), 16(4), 136-151. https://doi.org/10.3991/ijet.v16i04.18643
Google Scholar CrossrefHe, Y., Chen, R., Li, X., Hao, C., Liu, S., Zhang, G., & Jiang, B. (2020). Online at-risk student identification using RNN-GRU joint neural networks. Information, 11(10), 474. https://doi.org/10.3390/info11100474
Google Scholar CrossrefHeublein, U. (2014). Student Drop-out from German Higher Education Institutions. Eur. J. Educ., 49, 497-513. https://doi.org/10.1111/ejed.12097
Google Scholar CrossrefHiggins, J. P., & Green, S. (2008). Cochrane Handbook for Systematic Reviews of Interventions. The Cochrane Collaboration.
Google Scholar CrossrefHiggins, J. P., Thompson, S. G., Deeks, J. J., and Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327, 327–557. doi: 10.1136/bmj.327.7414.557
Google Scholar CrossrefHutagaol, N., & Suharjito, S. (2019). Predictive modelling of student dropout using ensemble classifier method in higher education. Adv. Sci. Technol. Eng. Syst. J., 4, 206-2011. Doi: 10.25046/aj040425
Google Scholar CrossrefJadric, M., Garaca, Z. & Cukusic, M. (2010). Student dropout analysis with application of data mining methods. Management: Journal of Contemporany Management Issues, 15(1), 31-46.
Google Scholar CrossrefJiang, S., Pang, G., Wu, M., & Kuang, L. (2012). An improved K-nearest-neighbor algorithm for text categorization. Expert Systems with Applications, 39(1), 1503-1509. 10.1016/j.eswa.2011.08.040
Google Scholar CrossrefKearney, C. A. (2008a). An interdisciplinary model of school absenteeism in youth to inform professional practice and public policy. Educational Psychology Review, 20, 257–282. https://doi.org/10.1007/s10648-008-9078-3.
Google Scholar CrossrefKim, D., & Kim, S. (2018). Sustainable education: Analyzing the determinants of university student dropout by nonlinear panel data models. Sustainability, 10(4), 954. https://doi.org/10.3390/su10040954
Google Scholar CrossrefKiss, B., Nay, M., Molontany, E., & Csabay, B. (2019). Predicting dropout using high school and first-semester academic achievement measures. In Proceedings of the 2019 17th International Conference on Emerging eLearning Technologies and Applications (ICETA), Starý Smokovec, Slovakia, 21–22 November 2019.
Google Scholar CrossrefKostopoulos, G., Kotsiantis, S., Ragos, O., & Grapsa, T. N. (2017). Early dropout prediction in distance higher education using active learning. In 2017 8th International Conference on Information, Intelligence, Systems & Applications (IISA) (pp. 1-6). IEEE.
Google Scholar CrossrefMahoney, J. L. (2018). School dropout. In M.H. Bomstein & M.E. Arterberry, K.L. Fingeman & E. Landsford (Eds.), The SAGE enciclopedia of lifespam human development (pp.1889-1891). SAGE.
Google Scholar CrossrefMartinho, V. R. D. C., Nunes, C., & Minussi, C. R. (2013). An intelligent system for prediction of school dropout risk group in higher education classroom based on artificial neural networks. In 2013 IEEE 25th International Conference on Tools with Artificial Intelligence (pp. 159-166). Ieee.
Google Scholar CrossrefMduma, N., & Machuve, D. (2021). Machine Learning Model for Predicting Student Dropout: A Case of Tanzania, Kenya and Uganda. In 2021 IEEE AFRICON (pp. 1-6). IEEE.
Google Scholar CrossrefMedCalc Software Ltd. Comparison of proportions calculator. https://www.medcalc.org/calc/comparison_of_proportions.php (Version 20.110; accessed June 9, 2022).
Google Scholar CrossrefMira, J., Delgado, A.E., Boticario, J.G., & Díez, F.J. (2003). Aspectos básicos de la inteligencia artificial. Sanz y Torres.
Google Scholar CrossrefMoschovakis, Y. N. (2001). What is an algorithm?. In Mathematics unlimited—2001 and beyond (pp. 919-936). Springer, Berlin, Heidelberg.
Google Scholar CrossrefMourdi, Y., Sadgal, M., Fathi, W. B., & El Kabtane, H. (2020). A machine learning based approach to enhance MOOC users’ classification. Turkish Online Journal of Distance Education, 21(2), 47-68.
Google Scholar CrossrefNabil, A., Seyam, M., & Abou-Elfetouh, A. (2021). Prediction of students’ academic performance based on courses’ grades using deep neural networks. IEEE Access, 9, 140731-140746. 10.1109/ACCESS.2021.3119596
Google Scholar CrossrefNiyogisubizo, J., Liao, L., Nziyumva, E., Murwanashyaka, E., & Nshimyumukiza, P. C. (2022). Predicting student's dropout in university classes using two-layer ensemble machine learning approach: A novel stacked generalization. Computers and Education: Artificial Intelligence, 3, 100066. https://doi.org/10.1016/j.caeai.2022.100066
Google Scholar CrossrefNuankaew, P. (2019). Dropout situation of business computer students, University of Phayao. International Journal of Emerging Technologies in Learning (iJET), 14(19), 115-131. https://doi.org/10.3991/ijet.v14i19.11177
Google Scholar CrossrefOECD (2019). Education at a Glance 2019: OECD indicators. OECD Publishing, Paris
Google Scholar CrossrefOztekin, A. (2016). A hybrid data analytic approach to predict college graduation status and its determinative factors. Industrial Management & Data Systems, 116(8) 1678-1699. https://doi.org/10.1108/IMDS-09-2015-0363
Google Scholar CrossrefPage, M.J., McKenzie, J.E., Bossuyt, P.M., Hoffmann, T.C., Mulrow, C.D. et al. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372(71). Doi: 10.1136/bmj.n71
Google Scholar CrossrefPal, M., & Mather, P. M. (2003). An assessment of the effectiveness of decision tree methods for land cover classification. Remote sensing of environment, 86(4), 554-565.
Google Scholar CrossrefPereira, R., & Zambrano, J. (2017). Application of decision trees for detection of student dropout profiles. Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December 2017.
Google Scholar CrossrefPopenici, S., & Kerr, S. (2017). Exploring the analysis artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning, 12(22). https://doi.org/10.1186/s41039-017-0062-8
Google Scholar CrossrefReuge, N., Jenkins, R., Brossard, M., Soobrayan, B., Mizunoya, S., Ackers, J., et al. (2021). Education response to COVID 19 pandemic, a special issue proposed by UNICEF: Editorial review. International Journal of Educational Development, 87, 102485. Doi: 10.1016/j.ijedudev.2021.102485
Google Scholar CrossrefRichardson, J.T.E. (2011). The analysis of 2 x 2 contingency tables – Yet again. Statistics in Medicine 30, 890. Doi: 10.1002/sim.4116
Google Scholar CrossrefSani, N. S., Nafuri, A. F. M., Othman, Z. A., Nazri, M. Z. A., & Mohamad, K. N. (2020). Drop-out prediction in higher education among B40 students. International Journal of Advanced Computer Science and Applications, 11(11). 10.14569/IJACSA.2020.0111169
Google Scholar CrossrefSokolova, M., Japkowicz, N., & Szpakowicz, S. (2006). Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. In Australasian joint conference on artificial intelligence (pp. 1015-1021). Berlin, Heidelberg: Springer Berlin Heidelberg.
Google Scholar CrossrefSreenivasa Rao, K., Swapna, N., & Praveen Kumar, P. (2018). Educational data mining for student placement prediction using machine learning algorithms. International Journal of Engineering and Technology (UAE), 7(1.2), 43–46. https://doi.org/10.14419/ijet.v7i1.2.8988
Google Scholar CrossrefSu, J.S., Zhang, B.F., & Xu, X. (2006). Advances in machine learning based text categorization. Ruan Jian Xue Bao (Journal of Software), 17(9), 1848-1859.
Google Scholar CrossrefTan, M., & Shao, P. (2015). Prediction of student dropout in e-Learning program through the use of machine learning method. International journal of emerging technologies in learning, 10(1). https://doi.org/10.3991/ijet.v10i1.4189
Google Scholar CrossrefTsao, N. L., Kuo, C. H., Guo, T. L., & Sun, T. J. (2017, July). Data Consideration for At-Risk Students Early Alert. In Advanced Applied Informatics (IIAI-AAI), 2017 6th IIAI International Congress on (pp. 208-211). IEEE.
Google Scholar CrossrefUliyan, D., Aljaloud, A. S., Alkhalil, A., Al Amer, H. S., Mohamed, M. A. E. A., & Alogali, A. F. M. (2021). Deep learning model to predict students retention using BLSTM and CRF. IEEE Access, 9, 135550-135558. Doi:10.1109/ACCESS.2021.3117117
Google Scholar CrossrefUNICEF (2017). Improving education participation. Policy and Practice Pointers for Enrolling All Children and Adolescents in School and Preventing Dropout. UNICEF Series on Education Participation and Dropout Prevention, 2.
Google Scholar CrossrefUNICEF (2018). Early warning systems for students at risk of dropping out. UNICEF Series on Education Participation and Dropout Prevention, 2.
Google Scholar CrossrefWilcoxson, L., Cotter, J., & Jon, S. (2011). Beyond the first-year experience: The impact on attrition of student experiences throughout undergraduate degree studies in six diverse universities. Stud. High. Educ., 36, 331-352. https://doi.org/10.1080/03075070903581533
Google Scholar CrossrefXiao, J., Wang, M. Jiang, B., & Li, J. (2018). A personalized recommendation system with combinational algorithm for online learning. J. Ambient Intell. Humanized Comput., 9(3), 667-677. 10.1007/s12652-017-0466-8
Google Scholar CrossrefPublished
Metrics
Almetric
Dimensions
How to Cite
Issue
Section
License
Copyright (c) 2024 Jacobo Roda-Segarra; Cristina de-la-Peña; Santiago Mengual-Andrés
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published under Creative Commons copyright (CC BY). Authors hold the copyright and retain publishing rights without restrictions, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles as the original source is cited.