Onto-semiotic complexity of the Definite Integral
https://doi.org/10.17583/redimat.2021.6778
Downloads
Abstract
Teaching and learning Calculus concepts and procedures, particularly the definite integral concept, is a challenge to teachers and students in their academic careers. In order to develop an informed plan for improving instructional processes, it is necessary to pay attention to the nature and complexity of the mathematical features of the definite integral, that students are expected to understand and apply. In this research, we supplement the analysis made by different authors, applying the theoretical and methodological tools of the Onto-Semiotic Approach to mathematical knowledge and instruction. The goal is to understand the diverse meanings of the concept of the definite integral and potentials semiotic conflicts based on the given data. We focus attention on a first intuitive meaning, which involves mainly arithmetic knowledge, and the definite integral formal meaning as Riemann’s sums limit predominantly in the curricular guidelines. The recognition of the onto-semiotic complexity of mathematics objects is considered as a key factor in explaining the learning difficulties of concepts, procedures and its application for problem-solving, as well as to make grounded decisions on teaching. The methodology analysis of a mathematical text, which we exemplify in this work applying the tools of Onto-Semiotic Approach, provides a microscopic level of analysis that allows us to identify some semiotic-cognitive facts of didactic interest. This also allows for the identification of some epistemic strata, that is, institutional knowledge that should have been previously studied, which usually goes unnoticed in the teaching process.
Downloads
References
Attorps, I., Björk, K., Radic, M. & Tossavainen, T. (2013). Varied ways to teach the definite integral concept. International Electronic Journal of Mathematics Education, 8 (2-3), 81-99.
Google Scholar CrossrefBressoud, D., Ghedams, I., Martinez-Luances, V., & Törner, G. (2016). Teaching and learning of Calculus. Springer. https://doi.org/10.1007/978-3-319-32975-8_1
Google Scholar CrossrefBrousseau, G. (1997). Theory of didactical situations in Mathematics. Dordrecht: Kluwer.
Google Scholar CrossrefChevallard, Y. (1992). Concepts fondamentaux de la didactique: perspectives apportées par une approche anthropologique. Recherches en Didactique des Mathématiques, 12 (1), 73-112.
Google Scholar CrossrefContreras, A., & Ordóñez, L. (2006). Complejidad ontosemiótica de un texto sobre la introducción a la integral definida. Relime, 9(1), 65-84.
Google Scholar CrossrefContreras, A., Ordóñez, L. & Wilhelmi, M. R. (2010). Influencia de las pruebas de acceso a la universidad en la enseñanza de la integral definida en el bachillerato. Enseñanza de las Ciencias, 28(3), 367-384. https://doi.org/10.5565/rev/ec/v28n3.63
Google Scholar CrossrefCrisóstomo, E. (2012). Idoneidad de procesos de estudio del cálculo integral en la formación de profesores de matemáticas: Una aproximación desde la investigación en didáctica del cálculo y el conocimiento profesional. Tesis doctoral. Departamento de Didáctica de la Matemática. Universidad de Granada.
Google Scholar CrossrefDubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In Tall, D. (Eds.), Advanced mathematical thinking (pp. 95–123). New York: Kluwer A. P. https://doi.org/10.1007/0-306-47203-1_7
Google Scholar CrossrefDuval, R. (1995). Sémiosis et pensée: registres sémiotiques et apprentissages intellectuels [Semiosis and human thought. Semiotic registers and intellectual learning]. Peter Lang.
Google Scholar CrossrefFont, V., & Contreras, A. (2008). The problem of the particular and its relation to the general in mathematics education. Educational Studies in Mathematics, 69(1), 33-52. https://doi.org/10.1007/s10649-008-9123-7
Google Scholar CrossrefAUTHOR
Google Scholar CrossrefAUTHOR
Google Scholar CrossrefAUTHOR
Google Scholar CrossrefGreefrath, G, Oldenburg, R., Siller, H. S., Ulm, V. & Weigand, H. G. (2016). Aspects and “Grundvorstellungen” of the concepts of derivative and integral subject matter-related didactical perspectives of concept formation. Journal Mathematik Didaktik, Suppl 1, 99-129. DOI 10.1007/s13138-016-0100-x
Google Scholar CrossrefGrundmeier, T. A., Hansen, J., & Sousa, E. (2006). An exploration of definition and procedural fluency in integral Calculus. PRIMUS, 16(2), 178-191.
Google Scholar CrossrefHershkowitz, R., Schwarz, B. B., & Dreyfus, T. (2001). Abstraction in context: Epistemic actions. Journal for Research in Mathematics Education, 32, 195–222.
Google Scholar CrossrefHiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 1-27). Hillsdale, NJ: Lawrence Erlbaum Associates.
Google Scholar CrossrefJones, S. R. (2013). Understanding the integral: Students’ symbolic forms. Journal of Mathematical Behavior, 32(2), 122–141. https://doi.org/10.1016/j.jmathb.2012.12.004
Google Scholar CrossrefJones, S, R. (2015). Areas, anti-derivatives, and adding up pieces: definite integrals in pure mathematics and applied science contexts. Journal of Mathematical Behaviour, 38, 9–28. https://doi.org/10.1016/j.jmathb.2015.01.001
Google Scholar CrossrefKouropatov, A., & Dreyfus, T. (2013). Constructing the integral concept on the basis of the idea of accumulation: Suggestion for a high school curriculum. International Journal of Mathematical Education in Science and Technology, 44, 641–651.
Google Scholar CrossrefKouropatov, A. & Dreyfus, T (2014). Learning the integral concept by constructing knowledge about accumulation. ZDM Mathematics Education, 46, 533–548.
Google Scholar CrossrefMarton, F., Runesson, U., & Tsui, A. (2004). The space of learning. In F. Marton and A. Tsui (Eds.), Classroom discourse and the space of learning (pp. 3-40). New Jersey: Lawrence Erlbaum Associates, INC Publishers.
Google Scholar CrossrefOrdoñez, L. (2011). Restricciones institucionales en las matemáticas de 2º de bachillerato en cuanto al significado del objeto integral definida. Tesis doctoral. Departamento de Didáctica de las Ciencias. Universidad de Jaén.
Google Scholar CrossrefOrton, A. (1983). Students’ understanding of integration. Educational Studies in Mathematics. 14, 1-18. https://doi.org/10.1007/bf00704699
Google Scholar CrossrefPeirce, Ch. S. (1958). Collected papers of Charles Sanders Peirce. 1931-1935. Cambridge, MA: Harvard UP.
Google Scholar CrossrefRasslan, S. & Tall, D. (2002). Definitions and images for the definite integral concept. In: A. D. Cockburn & E. Nardi (eds.) Proceedings of the 26th Conference PME, Norwich, 4, 89-96.
Google Scholar CrossrefSealey, V. (2014). A framework for characterizing student understanding of Riemann sums and definite integrals. Journal of Mathematical Behavior, 33, 230– 245. https://doi.org/10.1016/j.jmathb.2013.12.002
Google Scholar CrossrefSerhan, D. (2015). Students’ understanding of the definite integral concept. International Journal of Research in Education and Science, 1(1), 84-88. https://doi.org/10.21890/ijres.00515
Google Scholar CrossrefSfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. New York: Cambridge University Press. https://doi.org/10.1017/cbo9780511499944
Google Scholar CrossrefStarbird, M. (2006). Change and motion: Calculus made clear, 2nd Edition. Chantilly, Virginia. The Teaching Company.
Google Scholar CrossrefStewart, J. (2016). Calculus. Early transcendentals. Boston: Cengage Learning.
Google Scholar CrossrefTall, D. O. (2004). Building theories: the three worlds of mathematics. For the learning of mathematics, 24 (1), 29-32. https://doi.org/10.1017/cbo9781139565202.011
Google Scholar CrossrefTall, D., O. & Vinner, S. (1981). Concept images and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12, 151-169. https://doi.org/10.1007/bf00305619
Google Scholar CrossrefThompson, P. W., & Silverman, J. (2008). The concept of accumulation in Calculus. In M. P. Carlson & C. Rasmussen (Eds.), Making the connection: Research and teaching in undergraduate mathematics (pp. 43-52). Washington, DC: Mathematical Association of America. https://doi.org/10.5948/upo9780883859759.005. Available at http://pat-thompson.net/PDFversions/2008MAA Accum.pdf.
Google Scholar CrossrefWittgenstein, L. (1953). Philosophical investigations. New York, NY: The MacMillan Company.
Google Scholar CrossrefDownloads
Published
Metrics
Almetric
Dimensions
Issue
Section
License
Copyright (c) 2021 María Burgos, Seydel Bueno, Olga Pérez, Juan D. Godino
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal the right of first publication but allow anyone to share: (unload, , reprint, distribute and/or copy) and adapt (remix, transform reuse, modify,) for any proposition, even commercial, always quoting the original source.