La Comprensión de la Relación Inversa en la División en Edades Tempranas

Authors

https://doi.org/10.17583/redimat.2019.4546

Abstract

El objetivo de este trabajo es contribuir al estudio de la génesis de la comprensión de la relación inversa entre los términos de la división en una muestra de niños de primer y segundo curso de educación primaria en una escuela catalana, a través de las justificaciones que los niños dan a sus respuestas a los problemas. Se ha diseñado una intervención en función de dos condiciones de justificación -de la propia respuesta y de la respuesta del adulto- aplicada a una muestra de 44 niños, 20 de primero y 24 de segundo, con edades entre 7:06 y 8:05. Se realiza un Pretest y dos fases de intervención donde se presentan 16 situaciones problema. Los resultados establecen que los niños de segundo curso cometen menos errores que los de primero y parten de una mejor comprensión de la relación inversa. La tipología de errores varía en función del curso y de las fases del estudio. La justificación por la relación inversa es más frecuente en segundo y en la última fase de intervención. Entre las dos condiciones de feedback, la justificación de la respuesta del adulto es la que mejor favorece la comprensión.

 

Downloads

Download data is not yet available.

Author Biographies

Mariana Fuentes, Universitat Internacional de Catalunya

Profesora Contratada Doctora-Facultad de Educación

Patricia Olmos, Universitat Autònoma de Barcelona (UAB)

Profesora Agregada-Departamento de Pedagogía Aplicada

References

Bakker, M., van den Heuvel-Panhuizen, M., & Robitzsch, A. (2014). First-graders’ knowledge of multiplicative reasoning before formal instruction in this domain. Contemporary Educational Psychology, 39, 59–73. doi: 10.1016/j.cedpsych.2013.11.001

Google Scholar Crossref

Brown, M. (1981). Numbers operations. In K. M. Hart (Ed), Children’s understanding of Mathematics (pp. 11-16). London: John Murrayp.

Google Scholar Crossref

Bryant, P. (1997). Mathematics understanding in the nursery school years. In T. Nunes, & P. Bryant (Eds.), Learning and Teaching Mathematics: an international perspective (pp. 53-67). New York, NY: Psychology Press.

Google Scholar Crossref

Campbell, S., & Fraser, S. (1997). On preservice teachers’ understandings of division with remainder. In E. Pehkonen (Ed). Proceedings of the 21h Conference of the International Group for the Psychology of Mathematics Education (Vol 1, pp.177-184). Lahti, Finland: PME.

Google Scholar Crossref

Carraher, D. W., & Shliemann, A. D. (1991). Teachers´ guide to divide and conquer software. New York: Sunburst Communications.

Google Scholar Crossref

Correa, J., Nunes, T., & Bryant, P. (1998). Young children’s understanding of division: The relationship between divison terms in a noncomputational task. Journal of Educational Psychology, 90, 321-329. doi: 10.1037/0022-0663.90.2.321

Google Scholar Crossref

Desforges, A., & Desforges, C. (1980). Number-based strategies of sharing in young children. Education Studies, 6 (2), 97-109. doi: 10.1080/0305569800060201

Google Scholar Crossref

Fischbein, E., Deri, M., Nello, M., & Marino, M. (1985). The role of implicit models in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education, 16 (1), 3-17. doi: 10.2307/748969

Google Scholar Crossref

Frydman, O., & Bryant, P. E. (1988). Sharing and the understanding of number equivalence by young children. Cognitive Development, 3, 323-339. doi: 10.1016/0885-2014(88)90019-6

Google Scholar Crossref

Harel, G., & Confrey, J. (1994). The development of multiplicative reasoning in the development of mathematics. New York, NY: New York press.

Google Scholar Crossref

Kouba, V. (1989). Children’s solution strategies for equivalent set multiplication and division work problems. Journal for Research in Mathematics Education, 20 (2), 147-158. doi: 10.2307/749279

Google Scholar Crossref

Kornilaki, E., & Nunes, T. (2005). Generalising principles in spite of procedural differences: Children’s understanding of division. Cognitive Development, 20, 388-406. doi: 10.1016/j.cogdev.2005.05.004

Google Scholar Crossref

Lautert, S., Spinillo A., & Correa, J. (2012). Children’s difficulties with division: an intervention study. Educational Research, 3 (5), 447-456.

Google Scholar Crossref

Li, Y., & Silver, E. A. (2000). Can younger students succeed where older students fail? In examination of third graders’solutions of a division with-remainder (DWR) problem. The Journal of Mathematical Behavior, 19, 233- 246. doi: 10.1016/S0732-3123(00)00046-8

Google Scholar Crossref

Nesher, P. (1988). Multiplicative school word problems: theoretical approaches and empirical findings. In J. Hiebert & M. Behr (Eds.), Number concepts and operations in the middle grades (pp.141-161). Reston, VA: National Council for Teachers of Mathematics, Hillsdale, NJ: Lawrence Erlbaum.

Google Scholar Crossref

Nunes T. (2008). Understanding rational numbers. Att erövra världen. Grundläggande färdigheter i läsning; skrivning och matematik; 26-27 november 2007; Linköping. Linköping University Electronic Press; Linköpings universitet: 23-52

Google Scholar Crossref

Nunes T., & Bryant, P. (1996). Children doing mathematics. Oxford: Blackwell Publishers.

Google Scholar Crossref

Park, J., & Nunes, T. (2001). The development of the concept of multiplication. Cognitive Development, 16, 763-773. doi: 10.1016/S0885-2014(01)00058-2

Google Scholar Crossref

Siegler, R. (1995). How Does Change Occur: A Microgenetic study of Number Conservation. Cognitive Psychology, 28, 225-273. doi: 10.1006/cogp.1995.1006

Google Scholar Crossref

Silver, E.A. (1988). Solving story problems involving division with remainders: the importance of semantic processing and referential mapping. In J. Bergeron, N. Herscovics, & C. Kieran (Eds). Proceedings of the 10th Conference of the International Group for the Psychology of Mathematics Education (Vol 1, pp. 127-133). London, United Kingdom: PME.

Google Scholar Crossref

Silver, E. A., Shapiro, L. J., & Deutsch, A. (1993). Sense making and the solution of division problems involving remainders: an examination of middle school students’ solution processes and their interpretations of solutions. Journal for Research in Mathematics Education, 24 (2), 117- 135. doi: 10.2307/749216

Google Scholar Crossref

Skoumpoudi, C., & Sofikiti, D. (2009). Young children’s material manipulating strategies in division task. In M. Tzekaki, M. Kaldrimidou & H. Sakonidis (Eds). Proceedings of the 33th Conference of the International Group for the Psychology of Mathematics Education (Vol 5, pp. 137-145). Thessaloniki, Greece: PME.

Google Scholar Crossref

Sophian, C., Garyantes, D., & Chang, C. (1997). When three is less than two: Early developments in children's understanding of fractional quantities. Developmental Psychology, 33, 731-744. doi: 10.1037/0012-1649.33.5.731

Google Scholar Crossref

Spinillo, A. G., & Lautert, S. L. (2002). Representations and solving procedures in word division problems: comparing formal and informal knowledge in children. In A. D. Cockburn, & E. Nardi (Eds). Proceedings of the 26th Conference of the International Group for the Psychology of Mathematics Education (Vol 1, p. 318). Norwich, United Kingdom: PME.

Google Scholar Crossref

Spinillo, A. G., & Lautert, S. L. (2006). Exploring the role played by the remainder in the solution of division problems. In J. Novotná, H. Moraová, M. Krátká, & N. Stehlíková (Eds). Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (Vol 5, pp. 153-162). Praga, Czech Republic: PME.

Google Scholar Crossref

Squire, S., & Bryant, P. (2002). The influence of sharing on children’s initial concept of Division. Journal of Experimental Child Psychology, 81, 1-43. doi: 10.1006/jecp.2001.2640

Google Scholar Crossref

Stavy, R., & Tirosh, D. (2000). How Students (Mis-) Understand Science and Mathematics: Intuitive Rules. New York, NY: Teachers College Press.

Google Scholar Crossref

Vergnaud, G. (1990). La théorie des champs conceptuels. Récherches en Didactique des Mathématiques, 10 (23), 133-170.

Google Scholar Crossref

Vergnaud, G. (1997). The nature of mathematical concepts. In T. Nunes & P. Bryant (Eds.) Learning and teaching mathematics: an international perspective (pp. 5-28). New York, NY: Psychology Press.

Google Scholar Crossref

Published

2019-10-24

Almetric

Dimensions

Issue

Section

Articles