Niveles de Algebrización de la Actividad Matemática Escolar: Análisis de Libros de Texto y Dificultades de los Estudiantes
https://doi.org/10.17583/redimat.2017.1981
Downloads
Abstract
La introducción del razonamiento algebraico elemental desde los primeros niveles educativos es un tema que se ha propuesto desde hace casi dos décadas como resultado de diversas investigaciones. Dicha introducción en el currículo escolar se encuentra con diferentes obstáculos. Este documento contrasta niveles de algebrización tanto en las tareas propuestas en una colección de cinco libros de texto, usados en la primaria, como con los desempeños de niños cuando resuelven tareas algebraicas propuestas en tal colección. Los resultados obtenidos señalan que, si bien los niveles son útiles para asignar grados de algebrización a las tareas propuestas en la colección, y predicen cierta actividad algebraica desarrollada por los niños, la variedad de tareas en los textos y las prácticas que podrían realizar los niños son muy amplias y los criterios no dan cuenta de ellas.
Downloads
References
Anghileri, J. (1995). Language, arithmetic, and the negotiation of meaning. For the Learning of Mathematics, 15(3), 10-14.
Google Scholar CrossrefAsquith, P., Stephens, A. C., Knuth, E. J., & Alibali, M. W. (2007). Middle school mathematics teachers´ knowledge of students´ understanding of core algebraic concepts: Equal sign and variable. Mathematical Thinking and Learning, 9(3), 249-272.
Google Scholar CrossrefBarbosa, J. C. (2006). Mathematical modelling in classroom: A socio-critical and discursive perspective. ZDM, 38(3), 293-301.
Google Scholar CrossrefBlanton, M. L., & Kaput, J. (2001). Algebrafying the elementary mathematics experience. In H. L. Chick, K. Stacey, J. Vincent, & J. Vincent (Eds.), The Future of the Teaching and Learning of Algebra. Proceedings of the 12th ICMI study conference, 1, pp. 57-94. Melbourne: University of Melbourne, Australia.
Google Scholar CrossrefBlanton, M. L., & Kaput, J. J. (2004). Elementary grades students’ capacity for functional thinking. Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, 2, 135-142. Bergen, Norway.
Google Scholar CrossrefBolea, M. P., Bosch, M. & Gascón, J. (2001). La transposición didáctica de organizaciones matemáticas en proceso de algebrización. El caso de la proporcionalidad. Recherches en Didactique des Mathématiques (RDM), 21(3), 247-304.
Google Scholar CrossrefBrown, J. S., & Burton, R. R. (1978). Diagnostic models for procedural bugs in basic mathematical skills. Cognitive Science, 2(2), 155-192.
Google Scholar CrossrefCai, J., & Knuth, E. (2011). Early algebraization. A global dialogue from multiple perspectives. Berlín, Alemania: Springer-Verlag.
Google Scholar CrossrefCarpenter, T. P., Levi, L., Franke, M. L., & Zeringue, J. K. (2005). Algebra in elementary school: Developing relational thinking. Zentralblatt für Didaktik der Mathematik, 37(1), 53-59.
Google Scholar CrossrefCarraher, D. W., & Schliemann, A. D. (2007). Early Algebra and Algebraic Reasoning. In F. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and Learning: A project of the National Council of Teachers of Mathematics (Vol. 2, pp. 669-705). Charlotte, NC : Information Age Publishing.
Google Scholar CrossrefCastro, E., Rico, L. & Castro, E. (1995). Estructuras aritméticas elementales y su modelización. Una Empresa Docente, Grupo Editorial Iberoamérica S.A. de C.V., Bogotá.
Google Scholar CrossrefClement, J. (1982). Algebra word problem solutions: Thought processes underlying a common misconception. Journal for Research in Mathematics Education, 13(1): 16-30.
Google Scholar CrossrefCollis, K. F. (1974). Cognitive development and mathematics learning: Paper prepared for the Psychology of Mathematics Education Workshop, Centre for Science Education, Chelsea College, University of London, England Culture and Mathematical Thinking, pp. 7-21 y 103-129.
Google Scholar CrossrefDavis, R. B. (1985). ICME-5 Report: Algebraic thinking in the early grades. Journal of Mathematical Behavior, 4(2), 195-208.
Google Scholar CrossrefDavis, R. B. (1989). Theoretical considerations: Research studies in how humans think about algebra. In S. Wagner & C. Kieran (Eds.), Research Issues in the Learning and Teaching of Algebra (Vol. 4: 266-274). Reston, VA: NCTM y Laurence Erlbaum Associates.
Google Scholar CrossrefEnVision. (2012). Scott Foresman-Adisson Wesley. enVision Math. Pearson (2012).
Google Scholar CrossrefGinsburg, H. P., Kossan, N.E., Schwartz, R., & Swanson, D. (1983). Protocol methods in research on mathematical thinking. In H.P. Ginsburg (Ed.). The Development of Mathematical Thinking, pp. 7-47. London: Academic Press.
Google Scholar CrossrefGodino, J. D. (2002). Un enfoque ontológico y semiótico de la cognición matemática. Recherches en Didactique des Mathématiques, 22(2.3), 237-284.
Google Scholar CrossrefGodino, J. D. (2013). Diseño y análisis de tareas para el desarrollo del conocimiento didáctico-matemático de profesores. En J. M. Contreras, G. R. Cañadas, M. M. Gea y P. Arteaga (Eds.), Actas de las Jornadas Virtuales en Didáctica de la Estadística, Probabilidad y Combinatoria (pp. 1-15). Granada, Departamento de Didáctica de la Matemática de la Universidad de Granada, 2013.
Google Scholar CrossrefGodino, J. D., Aké, L. P., Gonzato, M. & Wilhelmi, M. R. (2014). Niveles de algebrización de la actividad matemática escolar. Implicaciones para la formación de maestros. Enseñanza de las Ciencias, 32(1), 199-219.
Google Scholar CrossrefKaput, J. J. (2000). Transforming algebra from an engine of inequity to an engine of mathematical power by "algebrafying" the K-12 curriculum. National Center of Improving Student Learning and Achievement in Mathematics and Science. Dartmouth, MA.
Google Scholar CrossrefKline, M. (2000). Matemáticas. La pérdida de la certidumbre. Madrid, Siglo XXI Editores.
Google Scholar CrossrefMcGowen, M. A., & Davis, G. E. (2001). Changing pre-service elementary teachers’attitudes to algebra. In H. L. Chick, K. Stacey, J. Vincent, & J. Vincent (Eds.), The Future of the Teaching and Learning of Algebra. Proceedings of the 12th ICMI study conference, 2, pp. 438-446. Melbourne: University of Melbourne, Australia.
Google Scholar CrossrefMolina, M. (2006). Desarrollo del pensamiento relacional y comprensión del signo igual por alumnos de tercero de educación primaria. Tesis Doctoral, dirigida en el Departamento de Ddáctica de la Matemática de la Facultad de Ciencias de la Educación, Universidad de Granada, Granada (España).
Google Scholar CrossrefNCTM. (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.
Google Scholar CrossrefPino-Fan, L. R., & Font, V. (2015). A methodology for the design of questionnaires to explore relevant aspects of didactic-mathematical knowledge of teachers. In K. Beswick, T. Muir, & J. Wells. (Eds.). Proceedings of the 39th Conference of the International Group for the Psychology of Mathematics Education, 4, pp. 25-32. Hobart, Australia: PME.
Google Scholar CrossrefRadford, L (2006). Elementos de una teoría cultural de la objetivación. Revista Latinoamericana de Investigación en Matemática Educativa (RELIME), número especial, pp.103-129.
Google Scholar CrossrefRadford, L (2013). Three key concepts of the theory of objectification: Knowledge, knowing, and learning. Journal of Research in Mathematics Education, 2 (1), 7-44.
Google Scholar CrossrefResnick, L. B., Nesher, P., Leonard, F., Magone, M., Omanson, S., & Peled, I. (1989). Conceptual bases of arithmetic errors: The case of decimal fractions. Journal for Research in Mathematics Education, 20(1), 8-27.
Google Scholar CrossrefRS/JMC. The Royal Society and Joint Mathematical Council of the United Kingdom. (1997). Teaching and learning algebra pre-19. London: Royal Society/JMC Working Group.
Google Scholar CrossrefSchliemann, A. D., Carraher, D. W., & Brizuela, B. M. (2012). Algebra in elementary school. In L. Coulange & J. –P. Drouhard (Eds.). Enseignement de I’algèbre élémentaire: Bilan et perspectives. Special Issue of Recherches en Didactique des Mathématiques (RDM), pp. 109-122.
Google Scholar CrossrefStacey, K. (1989). Finding and using patterns in linear generalizing problems. Educational Studies in Mathematics, 20(2): 147-164.
Google Scholar CrossrefStephens, A. C. (2008). What “counts” as algebra in the eyes of preservice elementary teachers? Journal of Mathematical Behavior, 27(1), 33-47.
Google Scholar CrossrefStrother, S.A. (2011). Algebra knowledge in early elementary school supporting later mathematics ability. Ph.D. dissertation, directed to the Faculty of the College of Arts and Sciences of the University of Louisville, Louisville, Kentucky.
Google Scholar CrossrefTall, D. (2001). Reflections on early algebra. In M. van den Heuvel-Panhuizen (Ed.). Proceedings of the 25th Conference of the International Group of the Psychology of Mathematics Education (PME25), 1, 149-152. Utrecht, The Netherlands.
Google Scholar CrossrefVan Dooren, W., Verschaffel, L., & Onghena, P. (2002). The impact of preservice teachers´ content knowledge on their evaluation of students´ strategies for solving arithmetic and algebra word problems. Journal for Research in Mathematics Education, 33(5), 319-351.
Google Scholar CrossrefVan Dooren, W., Verschaffel, L., & Onghena, P. (2003). Pre-service teachers´ preferred strategies for solving arithmetic and algebra word problems. Journal of Mathematics Teacher Education, 6(1), 27-52.
Google Scholar CrossrefDownloads
Published
Almetric
Dimensions
Issue
Section
License
Authors retain copyright and grant the journal the right of first publication but allow anyone to share: (unload, , reprint, distribute and/or copy) and adapt (remix, transform reuse, modify,) for any proposition, even commercial, always quoting the original source.