Development of Didactic Analysis Competence in Prospective Mathematics Teachers
Keywords:
Abstract
In this article, we describe the implementation and results of a formative experience with prospective mathematics teachers, focused on developing the competence for didactic-mathematical analysis of curriculum materials, specifically student workbooks related to probability. The research design follows a methodological approach typical of design-based research, utilizing content analysis to examine participants' responses. The study was conducted with 16 Peruvian students preparing to become mathematics teachers at the National University of the Altiplano. The responses from the prospective teachers revealed deficiencies in their common content knowledge. They also encountered difficulties in distinguishing mathematical practices and recognizing the mathematical objects involved in the study process, especially propositions and their respective arguments. Furthermore, they struggled to differentiate between intuitive, classical, and frequentist meanings of probability. To improve these outcomes, it is necessary to reinforce didactic-mathematical knowledge regarding probability.
Downloads
References
Batanero, C. (2005). Significados de la probabilidad en la educación secundaria [Meanings of Probability in Secondary Education]. Revista Latinoamericana de Investigación en Matemática Educativa, 8(3), 247-263.
Google Scholar CrossrefBatanero, C. y Álvarez-Arroyo, R. (2024). Teaching and learning of probability. ZDM - Mathematics Education, 56(1), 5–17. https://doi.org/10.1007/s11858-023-01511-5
Google Scholar CrossrefBatanero, C., Begué, N., Álvarez-Arroyo, R., & Valenzuela-Ruiz, S. M. (2021). Prospective mathematics teachers understanding of classical and frequentist probability. Mathematics, 9(19), 2526. https://doi.org/10.3390/math9192526
Google Scholar CrossrefBatanero, C., Chernoff, E. J., Engel, J., Lee, H. S., & Sánchez, E. (2016). Research on teaching and learning probability. Springer
Google Scholar CrossrefBatanero, C., Navarro-Pelayo, V., & Godino, J. D. (1997). Effect of the implicit combinatorial model on combinatorial reasoning in secondary school pupils. Educational Studies in Mathematics, 32(2), 181-199. https://doi.org/10.1023/A:1002954428327
Google Scholar CrossrefBeltrán-Pellicer, P., Godino, J. D., & Giacomone, B. (2018). Elaboración de indicadores específicos de idoneidad didáctica en probabilidad: aplicación para la reflexión sobre la práctica docente [Elaboration of Specific Didactical Suitability Criteria in Probability: Application for Reflection on the Teaching Practice]. Bolema: Boletim de Educação Matemática, 32(61), 526-548. https://doi.org/10.1590/1980-4415v32n61a11
Google Scholar CrossrefBreda, A., Pino-Fan, L. R., & Font, V. (2017). Meta Didactic-Mathematical Knowledge of Teachers: Criteria for The Reflection and Assessment on Teaching Practice. EURASIA Journal of Mathematics, Science and Technology Education, 13, 1893-1918. https://doi.org/10.12973/eurasia.2017.01207a
Google Scholar CrossrefBurgos, M., Beltrán-Pellicer, P., Giacomone, B., & Godino, J. D. (2018). Prospective mathematics teachers’ knowledge and competence analysing proportionality tasks. Educação e Pesquisa, 44, 1-22. https://doi.org/10.1590/S1678-4634201844182013
Google Scholar CrossrefBurgos, M., Castillo, M. J., Beltrán-Pellicer, P., Giacomone, B., & Godino, J. D. (2020). Análisis didáctico de una lección sobre proporcionalidad en un libro de texto de primaria con herramientas del enfoque ontosemiótico [Didactical analysis of a lesson on proportionality of a primary school textbook using tools of the onto-semiotic approach]. Bolema: Boletim de Educação Matemática, 34(66), 40-68. https://doi.org/10.1590/1980-4415v34n66a03
Google Scholar CrossrefBurgos, M., Giacomone, B., Godino, J. D., & Neto, T. (2019). Desarrollo de la competencia de análisis ontosemiótico de futuros profesores de matemáticas mediante tareas de proporcionalidad [Developing the Onto-Semiotic Analysis Competence of Prospective Mathematics Teachers Using Proportionality Tasks]. In E. Badillo, N. Climent, C. Fernández y M.T. González (Eds.), Investigación sobre el profesor de matemáticas: formación, práctica de aula, conocimiento y competencia profesional (pp. 241-261). Ediciones Universidad Salamanca.
Google Scholar CrossrefBurgos, M., & Godino, J. D. (2021). Assessing the epistemic analysis competence of prospective primary school teachers on proportionality tasks. International Journal of Science and Mathematics Education, 20, 367–38. https://doi.org/10.1007/s10763-020-10143-0
Google Scholar CrossrefCalle, E. C., Breda, A., & Font, V. (2021). Reflection on the complexity of mathematical items in initial teacher education. Journal of Higher Education Theory and Practice, 21, 197-214, 2021. https://doi.org/10.33423/jhetp.v21i13.4801
Google Scholar CrossrefCalle, E., Breda, A., & Font, V. (2023). Significados parciales del teorema de Pitágoras usados por profesores en la creación de tareas en el marco de un programa de formación continua [Partial meanings of the Pythagorean theorem used by teachers in the creation of tasks within the framework of a continuing education program] Uniciencia, 37(1), 1-23. https://doi.org/10.15359/ru.37-1.1
Google Scholar CrossrefChapman, O. (2014). Overall commentary: understanding and changing mathematics teachers. In J.–J. Lo, K. R. Leatham & L. R. Van Zoest (Eds.), Research Trends in Mathematics Teacher Education (pp. 295-309). Springer International Publishing.
Google Scholar CrossrefCohen, L., Manion, L., & Morrison, K. (2011). Research methods in education. Routledge.
Google Scholar CrossrefContreras, J. M. (2011). Evaluación de conocimientos y recursos didácticos en la formación de profesores sobre probabilidad condicional. [Doctoral thesis, Universidad de Granada].
Google Scholar CrossrefCotrado, B., Burgos, M., & Beltrán-Pellicer, P. (2022). Análisis ontosemiótico de los contenidos de probabilidad en los documentos curriculares de Perú [Ontosemiotic Analysis of Peruvian Curriculum Documents about Probability]. Educación Matemática, 34(3), 97-131. https://doi.org/10.24844/EM3403.04
Google Scholar CrossrefEstrada, A., & Batanero, C. (2007). Errores en el cálculo de probabilidades en tablas de doble entrada en profesores en formación. Uno: Revista de didáctica de las matemáticas, 44, 48-58.
Google Scholar CrossrefFont, V., Godino, J. D., & Gallardo, J. (2013). The emergence of objects from mathematical practices. Educational Studies in Mathematics, 82, 97–124. https://doi.org/10.1007/s10649-012-9411-0
Google Scholar CrossrefFont, V., Planas, N., & Godino, J. D. (2010). Modelo para el análisis didáctico en educación matemática [A model for the study of mathematicsteaching and learning processes]. Infancia y aprendizaje, 33(1), 89-105. https://doi.org/10.1174/021037010790317243
Google Scholar CrossrefGiacomone, B., Godino, J. D., Wilhelmi, M. R., & Blanco, T. F. (2018). Desarrollo de la competencia de análisis ontosemiótico de futuros profesores de matemáticas [Developing the onto-semiotic analysis competence of prospective mathematics teachers]. Revista Complutense de Educación, 29(4), 1109-1131. http://dx.doi.org/10.5209/RCED.54880
Google Scholar CrossrefGodino, J. D. (2024). Enfoque ontosemiótico en educación matemática: Fundamentos, herramientas y aplicaciones. Aula Magna. McGraw Hill.
Google Scholar CrossrefGodino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM, 39(1-2), 127-135. https://doi.org/10.1007/s11858-006-0004-1
Google Scholar CrossrefGodino, J. D., Giacomone, B., Batanero, C., & Font, V. (2017). Enfoque ontosemiótico de los conocimientos y competencias del profesor de matemáticas [Onto-Semiotic Approach to Mathematics Teacher's Knowledge and Competences]. Bolema: Boletim de Educação Matemática, 31(57), 90-113. http://dx.doi.org/10.1590/1980-4415v31n57a05
Google Scholar CrossrefGodino, J. D., Rivas, H., Arteaga, P., Lasa, A., & Wilhelmi, M. R. (2014). Ingeniería didáctica basada en el enfoque ontológico-semiótico del conocimiento y la instrucción matemáticos. Recherches en Didactique des Mathématiques, 34(2/3), 167-200.
Google Scholar CrossrefGómez, E. (2014). Evaluación y desarrollo del conocimiento matemático para enseñar la probabilidad en futuros profesores de educación primaria. [Doctoral thesis, Universidad de Granada].
Google Scholar CrossrefGómez, E., Contreras, J. M., & Batanero, C. (2015). Significados de la probabilidad en libros de texto para Educación Primaria en Andalucía. In C. Fernández, M. Molina y N. Planas (eds.), Investigación en Educación Matemática XIX (pp. 73-87). SEIEM.
Google Scholar CrossrefHoadley, U., & Galant, J. (2016). An analysis of the Grade 3 Department of Basic Education workbooks as curriculum tools. South African Journal of Childhood Education, 6(1), 1-12. https://doi.org/10.4102/sajce.v6i1.400
Google Scholar CrossrefLecoutre, M. P. (1992). Cognitive models and problem spaces in “purely random” situations. Educational Studies in Mathematics, 23(6), 557-568.
Google Scholar CrossrefLloyd, G. M., & Behm, S. L. (2005). Preservice elementary teachers’ analysis of mathematics instructional materials. Action in Teacher Education, 26(4), 48–62. https://doi.org/10.1080/01626620.2005.10463342
Google Scholar CrossrefMINEDU (2019a). Cuaderno de trabajo de Matemática: Resolvamos problemas secundaria 1. Ministerio de Educación (Perú).
Google Scholar CrossrefMINEDU (2019b). Cuaderno de trabajo de Matemática: Resolvamos problemas secundaria 2. Ministerio de Educación (Perú)
Google Scholar CrossrefMohamed, N. (2012). Evaluación del conocimiento de los futuros profesores de educación primaria sobre probabilidad. [Doctoral thesis, Universidad de Granada].
Google Scholar CrossrefParraguez, R., Gea, M. M., Díaz-Levicoy, D., & Batanero, C. (2017). ¿Conectan los futuros profesores las aproximaciones frecuencial y clásica de la probabilidad? Revista Digital: Matemática, Educación e Internet, 17(2). https://doi.org/10.18845/rdmei.v17i2.3077
Google Scholar CrossrefPepin, G., & Gueudet, G. (2018). Curriculum resources and textbooks in mathematics education. In: Lerman, S. (ed.). Encyclopedia of mathematics education (pp. 172-176). Springer. https://doi.org/10.1007/978-94-007-4978-8_40
Google Scholar CrossrefPino-Fan, L.R., Castro, W.F., & Font, V. (2023). A Macro Tool to Characterize and Develop Key Competencies for the Mathematics Teacher' Practice. International Journal of Science and Mathematics Education, 21, 1407–1432. https://doi.org/10.1007/s10763-022-10301-6
Google Scholar CrossrefPino-Fan, L., Godino, J. D., & Font, V. (2018). Assessing key epistemic features of didactic-mathematical knowledge of prospective teachers: the case of the derivative. Journal of Mathematics Teacher Education, 21(1), 63-94. https://doi.org/10.1007/s10857-016-9349-8
Google Scholar CrossrefPochulu, M., Font, V., & Rodríguez, M. (2016). Desarrollo de la competencia en análisis didáctico de formadores de futuros profesores de matemática a través del diseño de tareas [Development Of The Competence In Didactic Analysis Of Training Of Future Mathematics Teachers Through Task Design]. Revista Latinoamericana de Investigación en Matemática Educativa, 19(1), 71-98. https://doi.org/10.12802/relime.13.1913
Google Scholar CrossrefRemillard, J. T., & Kim, O. K. (2020). Elementary mathematics curriculum materials: Designs for student learning and teacher enactment. Springer Nature. https://doi.org/10.1007/978-3-030-38588-0
Google Scholar CrossrefRondero, C., y Font, V. (2015). Articulación de la complejidad matemática de la media aritmética. Enseñanza de las Ciencias, 33(2), 29-49. https://doi.org/10.5565/rev/ensciencias.1386
Google Scholar CrossrefRubio, N. (2012). Competencia del profesorado en el análisis didáctico de prácticas, objetos y procesos matemático. [Teacher competence in the didactic analysis of mathematical practices, objects and processes] Tesis doctoral, Universitat de Barcelona, España. https://www.tdx.cat/handle/10803/294031#page=1
Google Scholar CrossrefShawer, S. F. (2017). Teacher-driven curriculum development at the classroom level: Implications for curriculum, pedagogy and teacher training. Teaching and Teacher Education, 63, 296–313. https://doi.org/10.1016/j.tate.2016.12.017
Google Scholar CrossrefThompson, D. (2014). Reasoning-and-proving in the written curriculum: Lessons and implications for teachers, curriculum designers, and researchers. International Journal of Educational Research, 64, 141–148. https://doi.org/10.1016/j.ijer.2013.09.013
Google Scholar CrossrefVásquez, C., & Alsina, A. (2015). El conocimiento del profesorado para enseñar probabilidad: un análisis global desde el modelo del conocimiento didáctico-matemático [Teachers’ knowledge for teaching probability:A global analysis based on Didactic-Mathematical Knowledge model]. Avances de Investigación en Educación Matemática 7, 27-48. https://doi.org/10.35763/aiem.v1i7.104
Google Scholar CrossrefYang, K., & Liu, X. (2019). Exploratory study on Taiwanese secondary teachers’ critiques of mathematics textbooks. Eurasia Journal of Mathematics, Science and Technology Education, 15(1), em1655. https://doi.org/10.29333/ejmste/99515
Google Scholar CrossrefPublished
Metrics
Almetric
Dimensions
Issue
Section
License
Copyright (c) 2025 Bethzabe Cotrado, María Burgos, Pablo Beltrán-Pellicer, Alfredo Carlos Castro

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal the right of first publication but allow anyone to share: (unload, , reprint, distribute and/or copy) and adapt (remix, transform reuse, modify,) for any proposition, even commercial, always quoting the original source.