Mathematical Thinking of Fifth-Grade Students when Inventing and Solving Problems
https://doi.org/10.17583/redimat.14302
Keywords:
Abstract
The article investigates the mathematical thinking manifested by fifth-grade students when they invent and solve mathematical problems. The research problem refers to the need for more knowledge of students' mathematical thinking and how it is usually undervalued when it is done through standardized tests. Knowing students' mathematical thinking helps to build study processes that recognize them. The research was conducted over one year; it is qualitative and naturalistic; invention and problem-solving were used to determine students' mathematical thinking and solution strategies. The records were taken from the written production of forty-fifth graders when they invented problems to be proposed and solved by their classmates. The results report that children invent problems of an arithmetic nature, prefer operations between numbers over relations between them, and manifest difficulties in proposing problems when given information.
Downloads
References
Arıkan, E. E., & Ünal, H. (2015). Investigation of problem-solving and problem-posing abilities of seventh-grade students. Educational Sciences – Theory & Practice,15 (5), 1403–1416.
Google Scholar CrossrefArmstrong, A. (2014). Collective problem posing as an emergent phenomenon in middle school mathematics group discourse. En C. Nicol, P. Liljedahl, S. Oesterle y D. Allan (Eds.), Proceedings of the joint meeting of PME 38 and PME-NA 36 (Vol. 2, pp. 57-64). Vancouver, Canadá.
Google Scholar CrossrefAyllón, M. (2005). Invención de problemas con números naturales, enteros negativos y racionales. Tarea para profesores de educación primaria en formación [Tesis de doctorado, Universidad de Granada].
Google Scholar CrossrefAyllón, M. (2013). Invención-resolución de problemas por alumnos de Educación Primaria [Tesis de doctorado, Universidad de Granada]. DIGIBUG. http://hdl.handle.net/10481/27771
Google Scholar CrossrefAyllón, M., Castro, E. y Molina, M. (2010). Conocimiento aritmético informal puesto de manifiesto por una pareja de alumnos (6-7 años) sobre la invención y resolución de problemas. En M.M. Moreno, A. Estrada, J. Carrillo y T.A. Sierra. (Eds.), Investigación en Educación Matemática XIV (pp. 223-233). Lleida: SEIEM
Google Scholar CrossrefBell, A., Creer, B., Grimison, L., & Mangan, C. (1989). Children ‘s performance on multiplicative word problems: Elements of a descriptive theory. Journal for Research in mathematics Education, 20(5), 434-449.
Google Scholar CrossrefBrown, S., & Walter, M. (1993). Problem posing. Reflections and Applications. Hillsdale: Psychology Press. https://doi.org/10.4324/9781315785394
Google Scholar CrossrefCai, J. (2003). Singaporean students’ mathematical thinking in problem solving and problem posing: An exploratory study. International Journal of Mathematical Education in Science and Technology, 34 (5), 719–737. https://doi.org/10.1080/00207390310001595401
Google Scholar CrossrefCai, J., Moyer, J. C., Wang, N., Hwang, S., Nie, B., & Garber, T. (2013). Mathematical problem posing as a measure of curricular effect on students’ learning. Educational Studies in Mathematics, 83, 57–69.
Google Scholar CrossrefCai, J., & Hwang, S. (2002). Generalized and generative thinking in US and Chinese students’ mathematical problem solving and problem posing. The Journal of Mathematical Behavior, 21(4), 401–421. https://doi.org/10.1016/S0732-3123(02)00142-6
Google Scholar CrossrefCastro, E., Rico, L. y Castro, E. (1995). Estructuras aritméticas elementales y su modelización (1ra ed.). Una empresa docente y Grupo Editorial Iberoamericana S.A
Google Scholar CrossrefCoronel, M. y Curotto, M. (2008). La resolución de problemas como estrategia de enseñanza y aprendizaje. REEC: Revista electrónica de enseñanza de las ciencias, 7(2), 463-479.
Google Scholar CrossrefEnglish, L. (1998). Children’s Problem Posing within Formal and Informal Contexts. Journal for Research in Mathematics Education, 29(1), 83–106. https://doi.org/10.2307/749719
Google Scholar CrossrefEspinoza, J., Lupiáñez, J. y Segovia, I. (2013a). Características del talento matemático asociadas a la invención de problemas. Revista científica, (Edición especial), 190-195.
Google Scholar CrossrefEspinoza, J., Lupiáñez, J. y Segovia, I. (2013b). Invención de problemas aritméticos por estudiantes con talento en matemática: un estudio exploratorio. I Congreso de Educación Matemática de América Central y el Caribe, Santo Domingo, República Dominicana.
Google Scholar CrossrefEspinoza, J., Lupiáñez, J. y Segovia, I. (2014). La invención de problemas y sus ámbitos de investigación en educación matemática. Revista Digital: Matemática, Educación e Internet, 14(2), 1-12. https://doi.org/10.18845/rdmei.v14i2.1664
Google Scholar CrossrefFernández, E. y Molina, M. (2016). Indagación en el conocimiento conceptual del simbolismo algebraico de estudiantes de secundaria mediante la invención de problemas. Enseñanza de las ciencias: revista de investigación y experiencias didácticas, 34(1), 53-71. https://doi.org/10.5565/rev/ensciencias.1455
Google Scholar CrossrefFischbein, E., Deri, M., Nello, M., & Marino, M. (1985). The role of implicit models in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education, 16(1), 3-17. https://doi.org/10.2307/748969
Google Scholar CrossrefGeary, D. C. (1994). Children's mathematical development: Research and practical applications. American Psychological Association. https://doi.org/10.1037/10163-000
Google Scholar CrossrefGodino, J., Batanero, C., & Font, V. (2007). The Onto-Semiotic Approach to Research in Mathematics Education. ZDM Mathematics Education, 39(1), 127-135. https://doi.org/10.1007/s11858-006-0004-1
Google Scholar CrossrefGodino, J. y Llinares, S. (2000). El interaccionismo simbólico en educación matemática. Educación Matemática, 12(1), 70-92.
Google Scholar CrossrefGuerrero, Y. y Rey, N. (2013). Dificultades en la resolución de problemas multiplicativos. Revista Científica, 17(2), 197–200. https://doi.org/10.14483/23448350.6482
Google Scholar CrossrefInstituto Colombiano para la Evaluación de la Educación. (2022). Informe nacional de resultados de las pruebas Saber 3°, 5°, 7º y 9°. Aplicación 2022. https://www.icfes.gov.co/informe-nacional-2022
Google Scholar CrossrefJimeno, M. (2006). ¿Por qué las niñas y los niños no aprenden matemáticas? Editorial Octaedro. ISBN: 9788480637800.
Google Scholar CrossrefJuvanteny, M., Jiménez, E., García, I., Úbeda, L. y Moratonas, M. (2015). Una propuesta metodológica para el diseño, gestión y evaluación competencial de estrategias de resolución de un problema multiplicativo combinatorio. Números. Revista de didáctica de las matemáticas, 89(1), 69-85.
Google Scholar CrossrefKontorovich, I., Koichu, B., Leikin, R., & Berman, A. (2012). An exploratory framework for handling the complexity of mathematical problem posing in small groups. Journal of Mathematics Behavior, 31(1), 149-161. https://doi.org/10.1016/j.jmathb.2011.11.002
Google Scholar CrossrefKotsopoulos, D. y Cordy, M. (2009). Investigating imagination as a cognitive space for learning mathematics. Educational Studies in Mathematics, 70, 259–274. http://dx.doi.org/10.1007/s10649-008-9154-0
Google Scholar CrossrefLeung, Sk. S. (2013). Teachers implementing mathematical problem posing in the classroom: Challenges and strategies. Educational Studies in Mathematics, 83 (1), 103–116. https://doi.org/10.1007/s10649-012-9436-4
Google Scholar CrossrefLowrie, T., & Whitland, J. (2000). Problem posing as a tool for learning, planning and assessment in the primary school. En T. Nakahara y M. Koyama (Eds.), Proceedings of the 24th conference of the Psychology of Mathematics Education (pp. 247–254). Hiroshima, Japan.
Google Scholar CrossrefMinisterio de Educación Nacional. (1998). Lineamientos curriculares de matemáticas. http://www.mineducacion.gov.co/1759/articles-339975_matematicas.pdf
Google Scholar CrossrefMinisterio de Educación Nacional. (2006). Estándares Básicos de Competencias en Lenguaje, Matemáticas, Ciencias y Ciudadanas. http://www.mineducacion.gov.co/cvn/1665/articles-116042_archivo_pdf2.pdf
Google Scholar CrossrefNesher, P. (1982). Levels of description in the analysis of addition and subtraction Word problems. En T. P. Carpenter, J. M. Moser y T. A. Rombert. (Eds.), Addition and subtraction: a cognitive perspective (pp. 25-38). Hillsdale, NJ: Lawrence Erlbaum Associates.
Google Scholar CrossrefNoda, M. (2001). La resolución de problemas de matemáticas, bien y mal definidos. Números. Revista de didáctica de las matemáticas, 47, 3-18.
Google Scholar CrossrefOrganización para la Cooperación y el Desarrollo Económico [OCDE] (2019). Programme for international student assessment PISA. Results from PISA 2018. https://www.oecd.org/pisa/publications/PISA2018_CN_COL_ESP.pdf
Google Scholar CrossrefReitman, W. (1964). Heuristic decision procedures, open constraints, and the structure of ill-defined problems. Human judgments and optimality, 282-315.
Google Scholar CrossrefReyes, P. (2012). Caracterización del Pensamiento Matemático: Escenarios con estudiantes universitarios y de liceo utilizando temas de la Teoría de Grupos [Tesis de Doctorado, Universidad de Augsburgo]. https://www.researchgate.net/publication/278383052_Caracterizacion_del_Pensamiento_Matematico_Escenarios_con_estudiantes_universitarios_y_de_liceo_utilizando_temas_de_la_Teoria_de_Grupos
Google Scholar CrossrefRico, L. (2012). Aproximación a la investigación en Didáctica de la Matemática. AIEM. Avances de Investigación en Educación Matemática, 1(1). 39-63. https://doi.org/10.35763/aiem.v1i1.4
Google Scholar CrossrefRico, L., Martínez, E. y Solórzano, J. (1998). La invención de problemas en escolares de primaria: un estudio evolutivo. Aula, 10, 19-39. https://doi.org/10.14201/3529
Google Scholar CrossrefSalgado, A. y Terán, N. (2008). Dificultades infantiles de aprendizaje. Manual Orientativo para Padres y Educadores. Editorial Grupo cultural.
Google Scholar CrossrefSchindler, M., & Bakker, A. (2020). Affective field during collaborative problem posing and problem solving: A case study. Educational Studies in Mathematics, 105, 303-324. https://doi.org/10.1007/s10649-020-09973-0
Google Scholar CrossrefSilver, E. (1995). The nature and use of open problems in mathematics education: Mathematical and pedagogical perspectives. ZDM Zentralblatt Fur Didaktik der Mathematik, 27(2), 67-72.
Google Scholar CrossrefSilver, E. A. y Cai, J. (2005). Assessing students’ mathematical problem posing. Teaching Children Mathematics, 12 (3), 129–135.
Google Scholar CrossrefSinger, F., Ellerton, N. y Cai, J. (Eds.). (2015). Mathematical problem posing: From research to effective practice. Springer.
Google Scholar CrossrefSocas, M. (2011). Aprendizaje y enseñanza de las Matemáticas en Educación Primaria. Buenas prácticas. Educatio siglo XXI, 29(2), 199-224.
Google Scholar CrossrefStoyanova, E. (1998). Extending and exploring students ‟problem solving” via problem posing: a study of years 8 and 9 students involved in mathematics challenge and enrichment stages of Euler enrichment program for young Australians [Thesis, Edith Cowan University]. Research Online. https:/0/ro.ecu.edu.au/theses/885
Google Scholar CrossrefStoyanova, E. (2003). Extending students´ understanding of mathematics via problem-posing. Australian Mathematics Teacher, 59(2), 32-40. https://search.informit.org/doi/10.3316/aeipt.129365
Google Scholar CrossrefSuarsana, I., Lestari, I., & Mertasari, N. (2019). The effect of online problem posing on students’ problem-solving ability in mathematics. International Journal of Instruction, 12(1), 809-820.
Google Scholar CrossrefToluk-Uçar (2009). Developing pre-service teachers understanding of fractions through problem posing. Teaching and Teacher Education, 23(1), 166-175.
Google Scholar CrossrefVergel, R., Radford, L. y Rojas, P. (2022). Zona conceptual de formas de pensamiento aritmético «sofisticado» y proto-formas de pensamiento algebraico: una contribución a la noción de zona de emergencia del pensamiento algebraico. Bolema, 36(74), 1174-1192. http://dx.doi.org/10.1590/1980-4415v36n74a11
Google Scholar CrossrefVergnaud, G. (1983). Multiplicative structures. En R. Lesh y M. Landau (Eds.), Acquisitions of mathematics concepts and processes (pp. 127-174). Academy Press.
Google Scholar CrossrefYamamoto, S., Kanbe, T, Yoshida, Y., Maeda, K., & Hirashima, T. (2012). A case study of learning by problem-posing in introductory phase of arithmetic word problems. En Proceedings of the International Conference on Computers in Education, 25-32.
Google Scholar CrossrefZhang, H., & Cai, J. (2021). Teaching mathematics through problem posing: insights from an analysis of teaching cases. ZDM Mathematics Education, 53, 961-973. https://doi.org/10.1007/s11858-021-01260-3
Google Scholar CrossrefZhang, L., Cai, J., Song, N., Zhang, H., Chen, T., Zhang, Z., & Guo, F. (2022). Mathematical problem posing of elementary school students: The impact of task format and its relationship to problem solving. ZDM Mathematics Education, 54, 497-512. https://doi.org/10.1007/s11858-021-01324-4
Google Scholar CrossrefPublished
Almetric
Dimensions
Issue
Section
License
Copyright (c) 2024 Walter F. Castro, Catalina Herrera-Restrepo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal the right of first publication but allow anyone to share: (unload, , reprint, distribute and/or copy) and adapt (remix, transform reuse, modify,) for any proposition, even commercial, always quoting the original source.
Most read articles by the same author(s)
- Walter F. Castro, John D. Martínez-Escobar, Luis R. Pino-Fan, Niveles de Algebrización de la Actividad Matemática Escolar: Análisis de Libros de Texto y Dificultades de los Estudiantes , Journal of Research in Mathematics Education: Vol. 6 No. 2 (2017): June