Mathematical Thinking of Fifth-Grade Students when Inventing and Solving Problems

Authors

https://doi.org/10.17583/redimat.14302

Keywords:


Abstract

The article investigates the mathematical thinking manifested by fifth-grade students when they invent and solve mathematical problems. The research problem refers to the need for more knowledge of students' mathematical thinking and how it is usually undervalued when it is done through standardized tests. Knowing students' mathematical thinking helps to build study processes that recognize them. The research was conducted over one year; it is qualitative and naturalistic; invention and problem-solving were used to determine students' mathematical thinking and solution strategies. The records were taken from the written production of forty-fifth graders when they invented problems to be proposed and solved by their classmates. The results report that children invent problems of an arithmetic nature, prefer operations between numbers over relations between them, and manifest difficulties in proposing problems when given information.

Downloads

Download data is not yet available.

Author Biography

Walter F. Castro, University of Antioquia

Antioquia, Medellin

References

Arıkan, E. E., & Ünal, H. (2015). Investigation of problem-solving and problem-posing abilities of seventh-grade students. Educational Sciences – Theory & Practice,15 (5), 1403–1416.

Google Scholar Crossref

Armstrong, A. (2014). Collective problem posing as an emergent phenomenon in middle school mathematics group discourse. En C. Nicol, P. Liljedahl, S. Oesterle y D. Allan (Eds.), Proceedings of the joint meeting of PME 38 and PME-NA 36 (Vol. 2, pp. 57-64). Vancouver, Canadá.

Google Scholar Crossref

Ayllón, M. (2005). Invención de problemas con números naturales, enteros negativos y racionales. Tarea para profesores de educación primaria en formación [Tesis de doctorado, Universidad de Granada].

Google Scholar Crossref

Ayllón, M. (2013). Invención-resolución de problemas por alumnos de Educación Primaria [Tesis de doctorado, Universidad de Granada]. DIGIBUG. http://hdl.handle.net/10481/27771

Google Scholar Crossref

Ayllón, M., Castro, E. y Molina, M. (2010). Conocimiento aritmético informal puesto de manifiesto por una pareja de alumnos (6-7 años) sobre la invención y resolución de problemas. En M.M. Moreno, A. Estrada, J. Carrillo y T.A. Sierra. (Eds.), Investigación en Educación Matemática XIV (pp. 223-233). Lleida: SEIEM

Google Scholar Crossref

Bell, A., Creer, B., Grimison, L., & Mangan, C. (1989). Children ‘s performance on multiplicative word problems: Elements of a descriptive theory. Journal for Research in mathematics Education, 20(5), 434-449.

Google Scholar Crossref

Brown, S., & Walter, M. (1993). Problem posing. Reflections and Applications. Hillsdale: Psychology Press. https://doi.org/10.4324/9781315785394

Google Scholar Crossref

Cai, J. (2003). Singaporean students’ mathematical thinking in problem solving and problem posing: An exploratory study. International Journal of Mathematical Education in Science and Technology, 34 (5), 719–737. https://doi.org/10.1080/00207390310001595401

Google Scholar Crossref

Cai, J., Moyer, J. C., Wang, N., Hwang, S., Nie, B., & Garber, T. (2013). Mathematical problem posing as a measure of curricular effect on students’ learning. Educational Studies in Mathematics, 83, 57–69.

Google Scholar Crossref

Cai, J., & Hwang, S. (2002). Generalized and generative thinking in US and Chinese students’ mathematical problem solving and problem posing. The Journal of Mathematical Behavior, 21(4), 401–421. https://doi.org/10.1016/S0732-3123(02)00142-6

Google Scholar Crossref

Castro, E., Rico, L. y Castro, E. (1995). Estructuras aritméticas elementales y su modelización (1ra ed.). Una empresa docente y Grupo Editorial Iberoamericana S.A

Google Scholar Crossref

Coronel, M. y Curotto, M. (2008). La resolución de problemas como estrategia de enseñanza y aprendizaje. REEC: Revista electrónica de enseñanza de las ciencias, 7(2), 463-479.

Google Scholar Crossref

English, L. (1998). Children’s Problem Posing within Formal and Informal Contexts. Journal for Research in Mathematics Education, 29(1), 83–106. https://doi.org/10.2307/749719

Google Scholar Crossref

Espinoza, J., Lupiáñez, J. y Segovia, I. (2013a). Características del talento matemático asociadas a la invención de problemas. Revista científica, (Edición especial), 190-195.

Google Scholar Crossref

Espinoza, J., Lupiáñez, J. y Segovia, I. (2013b). Invención de problemas aritméticos por estudiantes con talento en matemática: un estudio exploratorio. I Congreso de Educación Matemática de América Central y el Caribe, Santo Domingo, República Dominicana.

Google Scholar Crossref

Espinoza, J., Lupiáñez, J. y Segovia, I. (2014). La invención de problemas y sus ámbitos de investigación en educación matemática. Revista Digital: Matemática, Educación e Internet, 14(2), 1-12. https://doi.org/10.18845/rdmei.v14i2.1664

Google Scholar Crossref

Fernández, E. y Molina, M. (2016). Indagación en el conocimiento conceptual del simbolismo algebraico de estudiantes de secundaria mediante la invención de problemas. Enseñanza de las ciencias: revista de investigación y experiencias didácticas, 34(1), 53-71. https://doi.org/10.5565/rev/ensciencias.1455

Google Scholar Crossref

Fischbein, E., Deri, M., Nello, M., & Marino, M. (1985). The role of implicit models in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education, 16(1), 3-17. https://doi.org/10.2307/748969

Google Scholar Crossref

Geary, D. C. (1994). Children's mathematical development: Research and practical applications. American Psychological Association. https://doi.org/10.1037/10163-000

Google Scholar Crossref

Godino, J., Batanero, C., & Font, V. (2007). The Onto-Semiotic Approach to Research in Mathematics Education. ZDM Mathematics Education, 39(1), 127-135. https://doi.org/10.1007/s11858-006-0004-1

Google Scholar Crossref

Godino, J. y Llinares, S. (2000). El interaccionismo simbólico en educación matemática. Educación Matemática, 12(1), 70-92.

Google Scholar Crossref

Guerrero, Y. y Rey, N. (2013). Dificultades en la resolución de problemas multiplicativos. Revista Científica, 17(2), 197–200. https://doi.org/10.14483/23448350.6482

Google Scholar Crossref

Instituto Colombiano para la Evaluación de la Educación. (2022). Informe nacional de resultados de las pruebas Saber 3°, 5°, 7º y 9°. Aplicación 2022. https://www.icfes.gov.co/informe-nacional-2022

Google Scholar Crossref

Jimeno, M. (2006). ¿Por qué las niñas y los niños no aprenden matemáticas? Editorial Octaedro. ISBN: 9788480637800.

Google Scholar Crossref

Juvanteny, M., Jiménez, E., García, I., Úbeda, L. y Moratonas, M. (2015). Una propuesta metodológica para el diseño, gestión y evaluación competencial de estrategias de resolución de un problema multiplicativo combinatorio. Números. Revista de didáctica de las matemáticas, 89(1), 69-85.

Google Scholar Crossref

Kontorovich, I., Koichu, B., Leikin, R., & Berman, A. (2012). An exploratory framework for handling the complexity of mathematical problem posing in small groups. Journal of Mathematics Behavior, 31(1), 149-161. https://doi.org/10.1016/j.jmathb.2011.11.002

Google Scholar Crossref

Kotsopoulos, D. y Cordy, M. (2009). Investigating imagination as a cognitive space for learning mathematics. Educational Studies in Mathematics, 70, 259–274. http://dx.doi.org/10.1007/s10649-008-9154-0

Google Scholar Crossref

Leung, Sk. S. (2013). Teachers implementing mathematical problem posing in the classroom: Challenges and strategies. Educational Studies in Mathematics, 83 (1), 103–116. https://doi.org/10.1007/s10649-012-9436-4

Google Scholar Crossref

Lowrie, T., & Whitland, J. (2000). Problem posing as a tool for learning, planning and assessment in the primary school. En T. Nakahara y M. Koyama (Eds.), Proceedings of the 24th conference of the Psychology of Mathematics Education (pp. 247–254). Hiroshima, Japan.

Google Scholar Crossref

Ministerio de Educación Nacional. (1998). Lineamientos curriculares de matemáticas. http://www.mineducacion.gov.co/1759/articles-339975_matematicas.pdf

Google Scholar Crossref

Ministerio de Educación Nacional. (2006). Estándares Básicos de Competencias en Lenguaje, Matemáticas, Ciencias y Ciudadanas. http://www.mineducacion.gov.co/cvn/1665/articles-116042_archivo_pdf2.pdf

Google Scholar Crossref

Nesher, P. (1982). Levels of description in the analysis of addition and subtraction Word problems. En T. P. Carpenter, J. M. Moser y T. A. Rombert. (Eds.), Addition and subtraction: a cognitive perspective (pp. 25-38). Hillsdale, NJ: Lawrence Erlbaum Associates.

Google Scholar Crossref

Noda, M. (2001). La resolución de problemas de matemáticas, bien y mal definidos. Números. Revista de didáctica de las matemáticas, 47, 3-18.

Google Scholar Crossref

Organización para la Cooperación y el Desarrollo Económico [OCDE] (2019). Programme for international student assessment PISA. Results from PISA 2018. https://www.oecd.org/pisa/publications/PISA2018_CN_COL_ESP.pdf

Google Scholar Crossref

Reitman, W. (1964). Heuristic decision procedures, open constraints, and the structure of ill-defined problems. Human judgments and optimality, 282-315.

Google Scholar Crossref

Reyes, P. (2012). Caracterización del Pensamiento Matemático: Escenarios con estudiantes universitarios y de liceo utilizando temas de la Teoría de Grupos [Tesis de Doctorado, Universidad de Augsburgo]. https://www.researchgate.net/publication/278383052_Caracterizacion_del_Pensamiento_Matematico_Escenarios_con_estudiantes_universitarios_y_de_liceo_utilizando_temas_de_la_Teoria_de_Grupos

Google Scholar Crossref

Rico, L. (2012). Aproximación a la investigación en Didáctica de la Matemática. AIEM. Avances de Investigación en Educación Matemática, 1(1). 39-63. https://doi.org/10.35763/aiem.v1i1.4

Google Scholar Crossref

Rico, L., Martínez, E. y Solórzano, J. (1998). La invención de problemas en escolares de primaria: un estudio evolutivo. Aula, 10, 19-39. https://doi.org/10.14201/3529

Google Scholar Crossref

Salgado, A. y Terán, N. (2008). Dificultades infantiles de aprendizaje. Manual Orientativo para Padres y Educadores. Editorial Grupo cultural.

Google Scholar Crossref

Schindler, M., & Bakker, A. (2020). Affective field during collaborative problem posing and problem solving: A case study. Educational Studies in Mathematics, 105, 303-324. https://doi.org/10.1007/s10649-020-09973-0

Google Scholar Crossref

Silver, E. (1995). The nature and use of open problems in mathematics education: Mathematical and pedagogical perspectives. ZDM Zentralblatt Fur Didaktik der Mathematik, 27(2), 67-72.

Google Scholar Crossref

Silver, E. A. y Cai, J. (2005). Assessing students’ mathematical problem posing. Teaching Children Mathematics, 12 (3), 129–135.

Google Scholar Crossref

Singer, F., Ellerton, N. y Cai, J. (Eds.). (2015). Mathematical problem posing: From research to effective practice. Springer.

Google Scholar Crossref

Socas, M. (2011). Aprendizaje y enseñanza de las Matemáticas en Educación Primaria. Buenas prácticas. Educatio siglo XXI, 29(2), 199-224.

Google Scholar Crossref

Stoyanova, E. (1998). Extending and exploring students ‟problem solving” via problem posing: a study of years 8 and 9 students involved in mathematics challenge and enrichment stages of Euler enrichment program for young Australians [Thesis, Edith Cowan University]. Research Online. https:/0/ro.ecu.edu.au/theses/885

Google Scholar Crossref

Stoyanova, E. (2003). Extending students´ understanding of mathematics via problem-posing. Australian Mathematics Teacher, 59(2), 32-40. https://search.informit.org/doi/10.3316/aeipt.129365

Google Scholar Crossref

Suarsana, I., Lestari, I., & Mertasari, N. (2019). The effect of online problem posing on students’ problem-solving ability in mathematics. International Journal of Instruction, 12(1), 809-820.

Google Scholar Crossref

Toluk-Uçar (2009). Developing pre-service teachers understanding of fractions through problem posing. Teaching and Teacher Education, 23(1), 166-175.

Google Scholar Crossref

Vergel, R., Radford, L. y Rojas, P. (2022). Zona conceptual de formas de pensamiento aritmético «sofisticado» y proto-formas de pensamiento algebraico: una contribución a la noción de zona de emergencia del pensamiento algebraico. Bolema, 36(74), 1174-1192. http://dx.doi.org/10.1590/1980-4415v36n74a11

Google Scholar Crossref

Vergnaud, G. (1983). Multiplicative structures. En R. Lesh y M. Landau (Eds.), Acquisitions of mathematics concepts and processes (pp. 127-174). Academy Press.

Google Scholar Crossref

Yamamoto, S., Kanbe, T, Yoshida, Y., Maeda, K., & Hirashima, T. (2012). A case study of learning by problem-posing in introductory phase of arithmetic word problems. En Proceedings of the International Conference on Computers in Education, 25-32.

Google Scholar Crossref

Zhang, H., & Cai, J. (2021). Teaching mathematics through problem posing: insights from an analysis of teaching cases. ZDM Mathematics Education, 53, 961-973. https://doi.org/10.1007/s11858-021-01260-3

Google Scholar Crossref

Zhang, L., Cai, J., Song, N., Zhang, H., Chen, T., Zhang, Z., & Guo, F. (2022). Mathematical problem posing of elementary school students: The impact of task format and its relationship to problem solving. ZDM Mathematics Education, 54, 497-512. https://doi.org/10.1007/s11858-021-01324-4

Google Scholar Crossref

Published

2024-06-21

Almetric

Dimensions

Issue

Section

Articles