The didactic transposition of the fundamental theorem of calculus
https://doi.org/10.17583/redimat.11982
Keywords:
Downloads
Number of words in the article:
8253Abstract
Downloads
References
Adams, R., & Essex, C. (2018). Calculus: A complete course (9th ed.). Pearson.
Google Scholar CrossrefBorgan, Ø., Borge, I. C., Engeseth, J., Heir, O., Moe, H., Norderhaug, T. T., & Vie, S. M. (2021). Matematikk R1 (4th ed.). Aschehoug.
Google Scholar CrossrefBosch, M., & Gascón, J. (2006). Twenty-five years of the didactic transposition. ICMI Bulletin, 58, 51–63.
Google Scholar CrossrefBorge, I., Engeseth, J., Heir, O., Moe, H., Norderhaug, T. T., & Vie, S. M. (2022). Matematikk R2 (4th ed.). Aschehoug.
Google Scholar CrossrefBotsko, M. W. (1991). A fundamental theorem of calculus that applies to all Riemann integrable functions. Mathematics Magazine, 64(5), 347–348. https://doi.org/10.1080/0025570X.1991.11977632
Google Scholar CrossrefBurgos, M., Buenos, S., Godino, J. D., & Pérez, O. (2021). Onto-semiotic complexity of the definite integral. Implications for teaching and learning calculus. REDIMAT – Journal of Research in Mathematics Education, 10(1), 4–40. http://dx.doi.org/10.17583/redimat.2021.6778
Google Scholar CrossrefChevallard, Y. (1989). On didactic transposition theory: Some introductory notes. In H. G. Steiner & M. Hejny (Eds.), Proceedings of the International Symposium on Selected Domains of Research and Development in Mathematics Education (pp. 51–62). University of Bielefeld, and University of Bratislava. http://yves.chevallard.free.fr/spip/spip/IMG/pdf/On_Didactic_Transposition_Theory.pdf
Google Scholar CrossrefChevallard, Y. (2019). Introducing the anthropological theory of the didactic: An attempt at a principled approach. Hiroshima J. Math. Educ., 12, 71–114.
Google Scholar CrossrefChevallard, Y. (2022). What is questioning the world? Towards an epistemological and curricular break [Keynote address]. 7th International Conference on the Anthropological Theory of the Didactic (CITAD7). Barcelona, Spain.
Google Scholar CrossrefChevallard, Y., & Bosch, M. (2014). Didactic transposition in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 170¬–174). Springer. https://doi.org/10.1007/978-94-007-4978-8_48
Google Scholar CrossrefDirectorate for Education and Training. (2006). Læreplan i matematikk for realfag: Programfag i utdanningsprogram for studiespesialisering. (MAT3-01) [Curriculum for mathematics in natural science and technology studies: Programme subject in educational programmes for specialisation in general studies (MAT3-01)] http://www.udir.no/kl06/MAT3-01
Google Scholar CrossrefDirectorate for Education and Training. (2020). Læreplan i matematikk for realfag (matematikk R) (MAT3-02) [Curriculum for mathematics in natural science and technology studies (mathematics R) (MAT03-02)]. https://www.udir.no/lk20/mat03-02
Google Scholar CrossrefFreudenthal, H. (2002). Didactic phenomenology of mathematical structures. Springer. (Original work published 1983)
Google Scholar CrossrefGonzález-Martín, A. S., & Camacho, M. (2004). What is first-year mathematics students’ actual knowledge about improper integrals? International Journal of Mathematics Education 35(1), 73–89. https://doi.org/10.1080/00207390310001615615
Google Scholar CrossrefGonzález-Martín. A. S., & Correia de Sá, C. (2007). Historical-epistemological dimension of the improper integral as a guide for new teaching practices. In E. Barbin, N. Stehlíková, & C. Tzanakis (Eds.), History and Epistemology in Mathematics Education: Proceedings of the 5th European Summer University (pp. 211–223). Vydavatelský servis. https://publimath.univ-irem.fr/numerisation/ACF/ACF08022/ACF08022.pdf
Google Scholar CrossrefHanke, E. (2018). “A function is continuous if an only if you can draw its graph without lifting the pen from the paper” – Concept usage in proofs by students in a topology course. In V. Durand-Guerrier, R. Hochmuth, S. Goodchild, & N. M. Hogstad (Eds.), Proceedings of INDRUM 2018. Second conference of the International Network for Didactic Research in University Mathematics (pp. 44–53), University of Agder and INDRUM. https://hal.archives-ouvertes.fr/hal-01849969
Google Scholar CrossrefHeir, O., Borge, I., Engeseth, J., Haug, H., & Moe, H. (2016). Matematikk R2 (3rd ed.). Aschehoug.
Google Scholar CrossrefLankeit, E., & Biehler, R. (2020). “I only know the absolute value function” – About students’ concept images and example spaces concerning continuity and differentiability. In T. Hausberger, M. Bosch, & F. Chellougui (pp. 133–142). University of Carthage and INDRUM. https://hal.archives-ouvertes.fr/hal-03113859
Google Scholar CrossrefLeong, Y. H., & Chick, H. L. (2011). Time pressure and instructional choices when teaching mathematics. Mathematics Educational Research Journal, 23(3), Article 347. https://doi.org/10.1007/s13394-011-0019-y
Google Scholar CrossrefLindstrøm, T. (2016). Kalkulus (4th ed.). Oslo: Universitetsforlaget.
Google Scholar CrossrefOrton, A. (1983) Students’ understanding of integration. Educational Studies in Mathematics, 14, 1–18. https://doi.org/10.1007/BF00704699
Google Scholar CrossrefPavlyk, O. (2008). Mathematica and the fundamental theorem of calculus. Wolfram. https://blog.wolfram.com/2008/01/19/mathematica-and-the-fundamental-theorem-of-calculus/
Google Scholar CrossrefPetropoulou, G., Jaworski, B., Potari, D., & Zachariades, T. (2016). How do research mathematicians teach calculus? In Krainer, K., & Vondrová, N. (Eds.), Proceedings of the ninth congress of the European Society for Research in Mathematics Education. (pp. 2221-2227) Charles University in Prague, Faculty of Education and ERME. https://hal.archives-ouvertes.fr/hal-01288620
Google Scholar CrossrefRubio, B. S., & Gómez-Chacón, I. M. (2011). Challenges with visualization: the concept of integral with undergraduate students. In M. Pytlak, T. Rowland & E. Swoboda (Eds.), Proceedings of the Seventh Congress of the European Society for Research in Mathematics Education (pp. 2073–2081). University of Rzeszów and ERME. http://erme.site/wp-content/uploads/2021/06/CERME7.pdf
Google Scholar CrossrefStrømskag, H., & Chevallard, Y. (2022). Didactic transposition of concavity of functions: From scholarly knowledge to mathematical knowledge to be taught in school. In M. Trigueros, B. Barquero, R. Hochmuth, & J. Peters (Eds.), Proceedings of the Fourth Conference of the International Network for Didactic Research in University Mathematics (). Leibniz University Hanover and INDRUM.
Google Scholar CrossrefTeig, N., Scherer, R. & Nilsen T. (2019). I know I can, but do I have the time? The role of teachers’ self-efficacy and perceived time constraints in implementing cognitive-activation strategies in science. Frontiers in Psychology, 10, Article 1697. https://doi.org/10.3389/fpsyg.2019.01697
Google Scholar CrossrefThompson, P. W., & Harel, G. (2021). Ideas foundational to calculus learning and their links to students’ difficulties. ZDM – Mathematics Education, 53(3), 507–519. https://doi.org/10.1007/s11858-021-01270-1
Google Scholar CrossrefTopphol, V., & Strømskag, H. (2022). A first-year mathematics student’s construction of a praxeology of integration tasks [Manuscript submitted for publication]. Department, University.
Google Scholar CrossrefWijayanti, D., & Winsløw, C. (2017). Mathematical practice in textbooks analysis: Praxeological reference models, the case of proportion. REDIMAT, 6(3), 307–330. https://doi.org/10.17583/redimat.2017.2078
Google Scholar CrossrefWinsløw, C. (2022). Mathematical analysis at university. In Y. Chevallard, B. Barquero, M. Bosch, I. Florensa, J. Gascón, P. Nicolás, & Ruiz-Munzón (Eds.), Advances in the anthropological theory of the didactic (pp. 295–305). Springer, Cham.
Google Scholar CrossrefDownloads
Published
Metrics
Almetric
Dimensions
Issue
Section
License
Copyright (c) 2023 Vegard Topphol
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal the right of first publication but allow anyone to share: (unload, , reprint, distribute and/or copy) and adapt (remix, transform reuse, modify,) for any proposition, even commercial, always quoting the original source.