The didactic transposition of the fundamental theorem of calculus

Authors

https://doi.org/10.17583/redimat.11982

Keywords:


Downloads

Number of words in the article:

8253

Abstract

Using the tools of praxeological analysis and didactical transposition analysis, the treatments of the Fundamental Theorem of Calculus in one Norwegian, Grade 13 textbook is analysed, with a particular focus on the development of the logos block of the FTC. The terms structure, functioning and utility, first introduced by Chevallard in 2022, is further to describe different dimensions of the mathematical object at stake. Through the analysis, a lack in the logos relating to the concept of integrability is identified in the textbook, and consequences of this is explored in relation to a set of tasks found in the book.

Downloads

Download data is not yet available.

References

Adams, R., & Essex, C. (2018). Calculus: A complete course (9th ed.). Pearson.

Google Scholar Crossref

Borgan, Ø., Borge, I. C., Engeseth, J., Heir, O., Moe, H., Norderhaug, T. T., & Vie, S. M. (2021). Matematikk R1 (4th ed.). Aschehoug.

Google Scholar Crossref

Bosch, M., & Gascón, J. (2006). Twenty-five years of the didactic transposition. ICMI Bulletin, 58, 51–63.

Google Scholar Crossref

Borge, I., Engeseth, J., Heir, O., Moe, H., Norderhaug, T. T., & Vie, S. M. (2022). Matematikk R2 (4th ed.). Aschehoug.

Google Scholar Crossref

Botsko, M. W. (1991). A fundamental theorem of calculus that applies to all Riemann integrable functions. Mathematics Magazine, 64(5), 347–348. https://doi.org/10.1080/0025570X.1991.11977632

Google Scholar Crossref

Burgos, M., Buenos, S., Godino, J. D., & Pérez, O. (2021). Onto-semiotic complexity of the definite integral. Implications for teaching and learning calculus. REDIMAT – Journal of Research in Mathematics Education, 10(1), 4–40. http://dx.doi.org/10.17583/redimat.2021.6778

Google Scholar Crossref

Chevallard, Y. (1989). On didactic transposition theory: Some introductory notes. In H. G. Steiner & M. Hejny (Eds.), Proceedings of the International Symposium on Selected Domains of Research and Development in Mathematics Education (pp. 51–62). University of Bielefeld, and University of Bratislava. http://yves.chevallard.free.fr/spip/spip/IMG/pdf/On_Didactic_Transposition_Theory.pdf

Google Scholar Crossref

Chevallard, Y. (2019). Introducing the anthropological theory of the didactic: An attempt at a principled approach. Hiroshima J. Math. Educ., 12, 71–114.

Google Scholar Crossref

Chevallard, Y. (2022). What is questioning the world? Towards an epistemological and curricular break [Keynote address]. 7th International Conference on the Anthropological Theory of the Didactic (CITAD7). Barcelona, Spain.

Google Scholar Crossref

Chevallard, Y., & Bosch, M. (2014). Didactic transposition in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 170¬–174). Springer. https://doi.org/10.1007/978-94-007-4978-8_48

Google Scholar Crossref

Directorate for Education and Training. (2006). Læreplan i matematikk for realfag: Programfag i utdanningsprogram for studiespesialisering. (MAT3-01) [Curriculum for mathematics in natural science and technology studies: Programme subject in educational programmes for specialisation in general studies (MAT3-01)] http://www.udir.no/kl06/MAT3-01

Google Scholar Crossref

Directorate for Education and Training. (2020). Læreplan i matematikk for realfag (matematikk R) (MAT3-02) [Curriculum for mathematics in natural science and technology studies (mathematics R) (MAT03-02)]. https://www.udir.no/lk20/mat03-02

Google Scholar Crossref

Freudenthal, H. (2002). Didactic phenomenology of mathematical structures. Springer. (Original work published 1983)

Google Scholar Crossref

González-Martín, A. S., & Camacho, M. (2004). What is first-year mathematics students’ actual knowledge about improper integrals? International Journal of Mathematics Education 35(1), 73–89. https://doi.org/10.1080/00207390310001615615

Google Scholar Crossref

González-Martín. A. S., & Correia de Sá, C. (2007). Historical-epistemological dimension of the improper integral as a guide for new teaching practices. In E. Barbin, N. Stehlíková, & C. Tzanakis (Eds.), History and Epistemology in Mathematics Education: Proceedings of the 5th European Summer University (pp. 211–223). Vydavatelský servis. https://publimath.univ-irem.fr/numerisation/ACF/ACF08022/ACF08022.pdf

Google Scholar Crossref

Hanke, E. (2018). “A function is continuous if an only if you can draw its graph without lifting the pen from the paper” – Concept usage in proofs by students in a topology course. In V. Durand-Guerrier, R. Hochmuth, S. Goodchild, & N. M. Hogstad (Eds.), Proceedings of INDRUM 2018. Second conference of the International Network for Didactic Research in University Mathematics (pp. 44–53), University of Agder and INDRUM. https://hal.archives-ouvertes.fr/hal-01849969

Google Scholar Crossref

Heir, O., Borge, I., Engeseth, J., Haug, H., & Moe, H. (2016). Matematikk R2 (3rd ed.). Aschehoug.

Google Scholar Crossref

Lankeit, E., & Biehler, R. (2020). “I only know the absolute value function” – About students’ concept images and example spaces concerning continuity and differentiability. In T. Hausberger, M. Bosch, & F. Chellougui (pp. 133–142). University of Carthage and INDRUM. https://hal.archives-ouvertes.fr/hal-03113859

Google Scholar Crossref

Leong, Y. H., & Chick, H. L. (2011). Time pressure and instructional choices when teaching mathematics. Mathematics Educational Research Journal, 23(3), Article 347. https://doi.org/10.1007/s13394-011-0019-y

Google Scholar Crossref

Lindstrøm, T. (2016). Kalkulus (4th ed.). Oslo: Universitetsforlaget.

Google Scholar Crossref

Orton, A. (1983) Students’ understanding of integration. Educational Studies in Mathematics, 14, 1–18. https://doi.org/10.1007/BF00704699

Google Scholar Crossref

Pavlyk, O. (2008). Mathematica and the fundamental theorem of calculus. Wolfram. https://blog.wolfram.com/2008/01/19/mathematica-and-the-fundamental-theorem-of-calculus/

Google Scholar Crossref

Petropoulou, G., Jaworski, B., Potari, D., & Zachariades, T. (2016). How do research mathematicians teach calculus? In Krainer, K., & Vondrová, N. (Eds.), Proceedings of the ninth congress of the European Society for Research in Mathematics Education. (pp. 2221-2227) Charles University in Prague, Faculty of Education and ERME. https://hal.archives-ouvertes.fr/hal-01288620

Google Scholar Crossref

Rubio, B. S., & Gómez-Chacón, I. M. (2011). Challenges with visualization: the concept of integral with undergraduate students. In M. Pytlak, T. Rowland & E. Swoboda (Eds.), Proceedings of the Seventh Congress of the European Society for Research in Mathematics Education (pp. 2073–2081). University of Rzeszów and ERME. http://erme.site/wp-content/uploads/2021/06/CERME7.pdf

Google Scholar Crossref

Strømskag, H., & Chevallard, Y. (2022). Didactic transposition of concavity of functions: From scholarly knowledge to mathematical knowledge to be taught in school. In M. Trigueros, B. Barquero, R. Hochmuth, & J. Peters (Eds.), Proceedings of the Fourth Conference of the International Network for Didactic Research in University Mathematics (). Leibniz University Hanover and INDRUM.

Google Scholar Crossref

Teig, N., Scherer, R. & Nilsen T. (2019). I know I can, but do I have the time? The role of teachers’ self-efficacy and perceived time constraints in implementing cognitive-activation strategies in science. Frontiers in Psychology, 10, Article 1697. https://doi.org/10.3389/fpsyg.2019.01697

Google Scholar Crossref

Thompson, P. W., & Harel, G. (2021). Ideas foundational to calculus learning and their links to students’ difficulties. ZDM – Mathematics Education, 53(3), 507–519. https://doi.org/10.1007/s11858-021-01270-1

Google Scholar Crossref

Topphol, V., & Strømskag, H. (2022). A first-year mathematics student’s construction of a praxeology of integration tasks [Manuscript submitted for publication]. Department, University.

Google Scholar Crossref

Wijayanti, D., & Winsløw, C. (2017). Mathematical practice in textbooks analysis: Praxeological reference models, the case of proportion. REDIMAT, 6(3), 307–330. https://doi.org/10.17583/redimat.2017.2078

Google Scholar Crossref

Winsløw, C. (2022). Mathematical analysis at university. In Y. Chevallard, B. Barquero, M. Bosch, I. Florensa, J. Gascón, P. Nicolás, & Ruiz-Munzón (Eds.), Advances in the anthropological theory of the didactic (pp. 295–305). Springer, Cham.

Google Scholar Crossref

Downloads

Published

2023-06-24

Almetric

Dimensions

Issue

Section

Articles