Covariational Reasoning and Instrumented Techniques in the Resolution of an Optimization Problem Mediated by GeoGebra
https://doi.org/10.17583/redimat.11419
Keywords:
Downloads
Number of words in the article:
8137Abstract
Downloads
References
Antonio, R., Escudero, D. I. y Flores, E. (2019). Una introducción al concepto de derivada en estudiantes de bachillerato a través del análisis de situaciones de variación. Educación Matemática, 31(1), 258-280. https://doi.org/10.24844/em3101.10
Google Scholar CrossrefArtigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245-274. https://doi.org/10.1023/A:1022103903080
Google Scholar CrossrefAvgerinos, E. & Remoundou, D. (2021). The Language of “Rate of Change” in Mathematics. Eur. J. Investig. Health Psychol. Educ., 11(4) 1599–1609. https://doi.org/10.3390/ejihpe11040113
Google Scholar CrossrefBataineh, H., Zoubi, A. y Khataybeh, A. (2019). Utilizing MATHEMATICA software to improve students’ problem solving skills of derivative and its applications. International Journal of Education and Research, 7(11), 57-70.
Google Scholar CrossrefCarlson, M., Jacobs, S., Coe, E., Larsen, S. y Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352-378. https://doi.org/10.2307/4149958
Google Scholar CrossrefChevallard, Y. (1999). El análisis de las prácticas docentes en la teoría antropológica de lo didáctico. Recherches en didactique des mathématiques, 19(2), 221-266.
Google Scholar CrossrefDenzin, N. K. y Lincoln, Y. S. (2011). The SAGE handbook of qualitative research. Sage Publications.
Google Scholar CrossrefGalindo-Illanes, M., Breda, A., Chamorro-Manríquez, D., & Alvarado-Martínez, H. (2022). Analysis of a teaching learning process of the derivative with the use of ICT oriented to engineering students in Chile. EURASIA Journal of Mathematics, Science and Technology Education, 18(7), em2130. https://doi.org/10.29333/ejmste/12162
Google Scholar CrossrefJohnson, H. y McClintock, E. (2018). A link between students’ discernment of variation in unidirectional change and their use of quantitative variational reasoning. Educational Studies in Mathematics, 97(3), 299-316. https://doi.org/10.1007/s10649-017-9799-7
Google Scholar CrossrefKouropatov, A. y Dreyfus, T. (2014). Learning the integral concept by constructing knowledge about accumulation. ZDM Mathematics Education, 46(4), 533–548. https://doi.org/10.1007/s11858-014-0571-5
Google Scholar CrossrefLaRue, R. y Infante, N. E. (2015). Optimization in first semester calculus: A look at a classic problem. International Journal of Mathematical Education in Science and Technology, 46(7), 1021-1031. https://doi.org/10.1080/0020739X.2015.1067844
Google Scholar CrossrefMartínez-Miraval, M. A., y García-Rodríguez, M. L. (2022). Razonamiento Covariacional de Estudiantes Universitarios en un Acercamiento al Concepto de Integral Definida mediante Sumas de Riemann. Formación Universitaria, 15(4), 105-118. http://dx.doi.org/10.4067/S0718-50062022000400105
Google Scholar CrossrefMedrano, I. & Pino-Fan, L.R. (2016). Estadios de comprensión de la noción matemática de límite finito desde el punto de vista histórico. REDIMAT, 5(1), 287-323. https://doi.org/10.17583/redimat.2016.1854
Google Scholar CrossrefMkhatshwa, T. y Doerr, H. (2018). Undergraduate students' quantitative reasoning in economic contexts. Mathematical Thinking and Learning, 20(2), 142-161. https://doi.org/10.1080/10986065.2018.1442642
Google Scholar CrossrefOrts, A., Boigues, F. J., y Llinares, S. (2018). Génesis Instrumental del Concepto de Recta Tangente. Acta Scientiae, 20(2), 72-83. https://doi.org/10.17648/acta.scientiae.v20iss2id3833
Google Scholar CrossrefRoorda, G., Vos, P., Drijvers, P., y Goedhart, M. (2016). Solving Rate of Change Tasks with a Graphing Calculator: a Case Study on Instrumental Genesis. Digit Exp Math Educ 2, 228–252. https://doi.org/10.1007/s40751-016-0022-8
Google Scholar CrossrefRojas-Escribano, L., Báez-Rojas, J. J. y Corona-Galindo, M. G. (2017). Propuesta didáctica para la enseñanza del tema de optimización, apoyado con Excel y Geogebra, para estudiantes de bachillerato. El cálculo y su enseñanza. Enseñanza de las Ciencias y la Matemática, 9(1), 52-63.
Google Scholar CrossrefSánchez-Matamoros, G., García, M. y Llinares, S. (2008). La comprensión de la derivada como objeto de investigación en didáctica de la matemática. Revista Latinoamericana de Investigación en Matemática Educativa, 11(2), 267-296
Google Scholar CrossrefThompson, P. y Carlson, M. (2017). Variation, covariation, and functions: Foundational ways of thinking mathematically. En J. Cai (Ed.), Compendium for research in mathematics education (pp. 421–456). National Council of Teachers of Mathematics.
Google Scholar CrossrefVilla-Ochoa, J., González-Gómez, D., y Carmona-Mesa, J. (2018). Modelación y Tecnología en el Estudio de la Tasa de Variación Instantánea de Matemáticas. Formación Universitaria, 11(2), 25-34. http://dx.doi.org/10.4067/S0718-50062018000200025
Google Scholar CrossrefDownloads
Published
Almetric
Dimensions
Issue
Section
License
Copyright (c) 2023 Mihály André Martínez-Miraval, Daysi Julissa García-Cuéllar, Martha Leticia García-Rodríguez
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal the right of first publication but allow anyone to share: (unload, , reprint, distribute and/or copy) and adapt (remix, transform reuse, modify,) for any proposition, even commercial, always quoting the original source.